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tons on CP 2. The reduction of Yang-Mills theory induces a quiver gauge theory involving

coupled Yang-Mills-Higgs systems on M with a Higgs potential leading to dynamical sym-

metry breaking. The criterion for a ground state of the Higgs potential can be written as

the vanishing of a non-abelian Yang-Mills flux on the quiver diagram, regarded as a lattice

with group elements attached to the links. The reduction of SU(3)-symmetric fermions

yields Dirac fermions on M transforming under the low-energy gauge group with Yukawa

couplings. The fermionic zero modes on CP 2 yield exactly massless chiral fermions on M ,

though there is a unique choice of spinc structure on CP 2 for which some of the zero modes

can acquire masses through Yukawa interactions. We work out the spontaneous symmetry

breaking patterns and determine the complete physical particle spectrum in a number of

explicit examples, some of which possess quantum number assignments qualitatively anal-

ogous to the manner in which vector bosons, quarks and leptons acquire masses in the

standard model.
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1 Introduction

The Kaluza-Klein programme, i.e. the idea that the Higgs and Yukawa sectors of the stan-

dard model of particle physics could have their origins in a simpler but higher-dimensional

theory, remains as attractive today as when it was when first proposed [1]. In the original

idea of Kaluza and Klein, and its non-abelian generalisation with a homogeneous internal

space G/H for H a closed subgroup of a compact Lie group G, the higher-dimensional

theory was pure gravity but in later schemes Einstein-Yang-Mills theories in higher dimen-

sions were introduced [2]. This has the potential to provide a unification of the gauge and
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Higgs sectors in higher dimensions, while the coupling of fermions to the higher-dimensional

gauge theory naturally induces Yukawa couplings after dimensional reduction. For certain

coset spaces, particularly the complex projective plane, the inclusion of topologically non-

trivial internal fluxes can induce the chiral fermionic spectrum of quarks and leptons of the

standard model [3].

The pioneering scheme realizing these constructions is called “coset space dimensional

reduction” [4, 5], though a generic problem with such reductions has been that they are

unable to generate chiral gauge theories, without some additional modifications [5, 6].

In coset space dimensional reduction, constraints are imposed on the higher-dimensional

fields ensuring that they are invariant under the G-action up to gauge transformations.

This amounts to studying embeddings of the isometry group G of the coset space, or

of its holonomy subgroup H, in the gauge group of the higher-dimensional theory and

the solutions of the constraints are then formally identified with the lowest modes of the

harmonic towers of fields.

On the other hand, the “equivariant dimensional reduction” of gauge theories naturally

incorporates the topology of background fields on G/H which are gauged with respect to

the holonomy group H. Although similar in spirit to the coset space dimensional reduc-

tion scheme, equivariant dimensional reduction systematically constructs the unique field

configurations on the higher-dimensional space which are equivariant with respect to the

internal isometry group G, and reduces Yang-Mills theory to a quiver gauge theory based

on a quiver (with relations) which is determined entirely by the representation theory of the

Lie groups G and H. As in coset space dimensional reduction, there is no a priori relation

between the gauge group G of the higher-dimensional field theory and the groups G or H,

and the resulting gauge group of the dimensionally reduced field theory is a subgroup of

G. This differs from the usual Kaluza-Klein reductions where the isometry group (or the

holonomy group) is identified with the gauge group. The general formalism is described

in [7, 8]. It has been applied in a variety of contexts in [9, 10] when the internal coset

space is the projective line CP 1. Dimensional reduction over the fuzzy sphere CP 1
F is

also considered in [10, 11]. In this paper we extend the analysis of the vacuum states of

such quiver gauge theories performed in [10] to an example with non-abelian holonomy,

the projective plane CP 2. The corresponding quiver gauge theories have been discussed

in [12]. This example is rich enough to capture some general features of the vacua of the

quiver gauge theories which are induced by reduction over generic coset spaces G/H.

When the internal space is the projective plane CP 2, the equivariant dimensional

reduction of gauge fields naturally comes with U(1) monopoles and SU(2) instantons, in

contrast to CP 1 where only monopoles are present, and this introduces essential differences

from the CP 1 case. As in the Kaluza-Klein approach, the mass scale of the dimensionally

reduced field theory is set by the size of the internal space. We obtain a Higgs sector of the

lower-dimensional gauge theory with a Higgs potential that leads to dynamical symmetry

breaking, as a direct consequence of the non-trivial internal fluxes, and we work out the

complete physical particle content and masses for a number of explicit symmetry breaking

hierarchies. As in the case of reduction over CP 1, a Yukawa sector of the reduced fermionic

field theory is naturally induced. The harmonic expansion over CP 2 induces an infinite
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tower of massive fermions in the reduced field theory, but the topologically non-trivial

gauge fields on the internal CP 2 necessarily also induce exactly massless chiral modes in

the reduced field theory. As in the CP 1 case, some of the massless spinor fields which arise

as a consequence of the index theorem on the internal space acquire masses through their

Yukawa couplings, but in general not all of them.

There is a number of other differences between the equivariant dimensional reduction

over CP 1 and that over CP 2 which is studied here. The fact that the rank of the holonomy

group is now greater than one means that the quiver diagram is no longer a one-dimensional

chain but is a higher-dimensional lattice, of dimension two in the case of CP 2. We show

that the condition for a vacuum state of the Higgs sector of the reduced field theory can

be phrased in terms of a non-abelian gauge theory on the quiver lattice. A group element

associated with the Higgs field can be placed on each link of the quiver diagram, and

minimising the Higgs potential requires that the resulting gauge field flux on the quiver

lattice is zero. The Higgs vacuum requires that the lattice gauge field is gauge equivalent

to the trivial gauge potential.

Another difference is associated with spinors on CP 2 and the treatment of the fermionic

field theory. It is well-known that CP 2 does not admit a spin structure, as there is a global

obstruction to putting spinors on CP 2 associated with the fact that its second Stiefel-

Whitney class is non-trivial [13]. However, since the equivariant dimensional reduction

scheme necessarily induces topologically non-trivial monopole and instanton fields on the

internal space, the reduction itself provides a solution to the problem of absence of spin

structure on CP 2 by simply coupling spinor fields to non-trivial gauge backgrounds and

using spinc structures for line bundles or non-abelian spinc structures for higher rank bun-

dles. Gauge fields on CP 2 and their coupling to spinors were studied in [14, 15]. We will

find that there is a unique spinc structure accommodating the background gauge fields on

CP 2 which generically lead to Yukawa interactions after dimensional reduction, in con-

trast to the CP 1 reductions, whereas other choices of twisting can produce more realistic

generations of fermions. We will explicitly display models in which the quantum number

assignments for the fermions are qualitatively similar to those of quarks and leptons in the

standard model.

This paper is organised as follows. In section 2 we describe the kinematics of equivari-

ant dimensional reduction over CP 2, particularly how the gauge and Higgs fields in the re-

duced field theory depend on representation theory and the various irreducible SU(2)×U(1)

representations that can arise from a given SU(3) representation, as well as the harmonic

expansion of zero mode spinors. In section 3 we derive the dimensionally reduced action,

showing how the Higgs potential depends on the group representation content and how

Yukawa couplings are induced in the Dirac action. Some examples are studied in detail in

the ensuing two sections, one class of examples based on the fundamental representation

of SU(3) in section 4 and one class based on the adjoint representation in section 5. Our

conclusions are summarised in section 6. Some technical details are relegated to three

appendices at the end of the paper. In appendix A we calculate Chern numbers for the

various equivariant vector bundles over CP 2 required in our analysis. Some useful identities

for equivariant one-forms on CP 2 are given in appendix B. Finally, the index of the Dirac
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operator on CP 2, coupled to various topologically non-trivial gauge field backgrounds, is

computed in appendix C.

2 Equivariant dimensional reduction over the projective plane

In this section we will describe the SU(3)-equivariant dimensional reduction of gauge

and fermion fields over an internal complex projective plane CP 2. For some further

details, see [12]. Throughout this section all local coordinates and fields are taken

to be dimensionless.

2.1 Homogeneous vector bundles on CP 2

We are interested in the geometry of the symmetric coset space CP 2 ∼= G/H, where

H = S
(
U(2) × U(1)

) ∼= SU(2) × U(1) (2.1)

is the holonomy subgroup of the isometry group G = SU(3) of CP 2. Given a finite-

dimensional representation V of H, the corresponding induced, homogeneous hermitean

vector bundle over CP 2 is given by the fibred product

V = G×H V . (2.2)

Every G-equivariant bundle of finite rank over CP 2, with respect to the standard left tran-

sitive action of G on the homogeneous space, is of the form (2.2). If V is irreducible, then

H is the structure group of the associated principal bundle. We restrict to those represen-

tations V which descend from some irreducible representation of SU(3) by restriction to H.

The Dynkin diagram for SU(3) consists of a pair of roots α1, α2. The complete set ∆

of non-null roots is ±α1,±α2,± (α1 +α2), with the inner products (α1, α1) = (α2, α2) = 1

and (α1, α2) = −1
2 so that (α1 + α2, α1 + α2) = 1. For the system ∆+ of positive roots

we take α1 = (1, 0), α2 = 1
2

(
−1,

√
3
)

and α1 + α2 = 1
2

(
1,
√

3
)
. The generators of

SU(3) for the Cartan-Weyl basis are given by the Chevalley generators Eα1
, Eα2

and

Eα1+α2
:= [Eα1

, Eα2
], together with the generators Hα1

and Hα2
of the Cartan subalgebra

u(1) ⊕ u(1). The non-vanishing commutation relations are

[Hα1
, E±α1

] = ± 2E±α1
and [Hα2

, E±α1
] = 0 ,

[Hα1
, E±α2

] = ∓E±α2
and [Hα2

, E±α2
] = ± 3E±α2

,

[Hα1
, E± (α1+α2)] = ±E± (α1+α2) and

[
Hα2

, E± (α1+α2)

]
= ± 3E± (α1+α2) ,

[Eα1
, E−α1

] = Hα1
and [Eα2

, E−α2
] = 1

2 (Hα2
−Hα1

) ,

[Eα1+α2
, E−α1−α2

] = 1
2 (Hα1

+Hα2
) and [E±α1

, E±α2
] = E± (α1+α2) ,[

E±α1
, E∓ (α1+α2)

]
= ∓E∓α2

and
[
E±α2

, E∓ (α1+α2)

]
= ±E∓α1

. (2.3)

The fundamental weights are µα1
= 1

2

(
1, 1√

3

)
and µα2

=
(
0, 1√

3

)
. For each pair of

non-negative integers (k, l) there is an irreducible representation Ck,l of SU(3) of dimension

dk,l := dim
(
Ck,l

)
= 1

2 (k + 1) (l + 1) (k + l + 2) (2.4)
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and highest weight µ = k µα1
+ l µα2

. We label the weight vectors of U(2) ∼= SU(2) ×U(1)

in SU(3) by (n,m) with respect to the basis (Hα1
,Hα2

). The eigenvalue of Hα1
is n =

2I and labels twice the isospin I, so that (n + 1) is the dimension of the irreducible

SU(2) representation. The eigenvalue m = 3Y of Hα2
is three times the hypercharge Y ,

and later on we shall identify m with twice the magnetic charge. The restriction of the

SU(3) operators E±α1
to SU(2) shifts vertices along the horizontal directions of the weight

diagrams, while the generators Eα2
and Eα1+α2

act on the weights as

(n,m) 7−→ (n± 1,m+ 3) , (2.5)

depending on which particular weight vectors (n,m) the raising operators Eα1+α2
and

Eα2
act on.

For a fixed pair of non-negative integers (k, l), the decomposition of the irreducible

SU(3)-module Ck,l as a representation of SU(2) × U(1) can be obtained by collapsing

the “horizontal” SU(2) representations to single nodes in the weight diagram for Ck,l.

The corresponding collection of weights (n,m), which we denote by Wk,l, is conveniently

parameterized by a pair of independent SU(2) spins j± = j±(n,m), with 2j+ = 0, 1, . . . , k

and 2j− = 0, 1, . . . , l, that are defined in terms of Young tableaux as follows. Represent

the irreducible H-module (n,m) with (n,m) = (1, 1) by × and that with (n,m) = (0,−2)

by ◦ . Then the SU(3) → SU(2) × U(1) decomposition of the fundamental representation

C1,0
∣∣
H

= (1, 1) ⊕ (0,−2) (2.6)

is depicted by

−→ × 1
⊕ ◦ −2

. (2.7)

In terms of SU(3) Young tableaux, the irreducible representation Ck,l corresponds

to the diagram
··
··︸ ︷︷ ︸
l

··︸ ︷︷ ︸
k

, (2.8)

and this contains all SU(2) × U(1) representations

× ·· ×
× ·· ×︸ ︷︷ ︸
l−2j−

◦ ·· ◦
× ·· ×︸ ︷︷ ︸

2j−

◦ ·· ◦︸ ︷︷ ︸
k−2j+

× ·· ×︸ ︷︷ ︸
2j+

(2.9)

of dimension 2j++2j−+1 and charge 2(l−k)+6(j+−j−), with multiplicity one. This gives

n = 2(j+ + j−) and m = 6(j+ − j−) − 2(k − l) . (2.10)

The integers (n,m) have the same even/odd parity. This is because the weights come

from embedding SU(2)×U(1) in SU(3), and as such they only give faithful representations

of U(2).

The bundle (2.2) with V = Ck,l
∣∣
H

corresponds to a representation of a certain finite

quiver with relations [12] in the category of homogeneous vector bundles over CP 2. The

– 5 –
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2j
−

2j
 +

(l,−(2k+l)) (k+l,k−l)

(k,k+2l)(0,2(l−k))

Figure 1. Quiver diagram for the representation Ck,l of SU(3).

elements (n,m) of the set Wk,l can be associated with vertices of a directed graph depicted

in figure 1, where only the four boundary corners are labelled with their values of (n,m)

to avoid cluttering the diagram. The weight morphisms (2.5) take the simple forms

j+(n+ 1,m+ 3) = j+(n,m) + 1
2 and j+(n− 1,m+ 3) = j+(n,m) ,

j−(n− 1,m+ 3) = j−(n,m) − 1
2 and j−(n+ 1,m+ 3) = j−(n,m) , (2.11)

corresponding to the horizontal and vertical arrows in figure 1. We will refer to this graph

as the “quiver lattice”, since the vacua of the quiver gauge theories we consider later on

have an elegant interpretation in terms of lattice gauge theory defined on the directed

graph in figure 1.

2.2 SU(3)-equivariant bundles

We are interested in the structure of G-equivariant gauge fields on manifolds of the form

M := M × CP 2 = G×H M , (2.12)

where M is a manifold of (real) dimension d and G = SU(3) acts trivially on M . We will

reduce gauge theory on (2.12) by compensating the isometries of CP 2 with gauge transfor-

mations, such that the Lie derivative with respect to a Killing vector field is given by an in-

finitesimal gauge transformation on M. This twisted reduction is accomplished by uniquely

extending the homogeneous vector bundles (2.2) by H-equivariant bundles E →M .

Let Ek,l → M be a rank p hermitean vector bundle over the space (2.12), associated

to an irreducible representation Ck,l of SU(3), with structure group U(p). There is a

one-to-one correspondence between G-equivariant hermitean vector bundles over M and

H-equivariant hermitean vector bundles over M , with H acting trivially on M [7]. Given

an H-equivariant bundle Ek,l →M of rank p associated to the representation Ck,l
∣∣
H

of H,

the corresponding G-equivariant bundle over M is defined by induction as

Ek,l = G×H Ek,l . (2.13)

– 6 –
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The action of the holonomy group H on Ek,l is defined by the isotopical decomposition

Ek,l =
⊕

(n,m)∈Wk,l

En,m ⊗ (n,m) with En,m = HomH

(
(n,m) , Ek,l

)
, (2.14)

where (n,m) are the irreducible H-modules occurring in the decomposition of Ck,l
∣∣
H

. The

vector bundles En,m → M have rank pn,m and trivial H-actions. The rank p of Ek,l is

given by

p =
∑

(n,m)∈Wk,l

(n+ 1) pn,m . (2.15)

The action of the SU(3) operators E±α2
and E± (α1+α2) is implemented by means of bi-

fundamental Higgs fields φ±n,m ∈ Hom (En,m, En±1,m+3). These bundle morphisms realize

the G-action of the coset generators which twists the naive dimensional reduction by “off-

diagonal” terms. This construction explicitly breaks the gauge group of the bundle Ek,l as

U(p) −→
∏

(n,m)∈Wk,l

U(pn,m) . (2.16)

With

Hn,m = G×H (n,m) (2.17)

the homogeneous bundle (2.2) induced by the irreducible H-module (n,m), the structure

group of the principal bundle associated to

Ek,l =
⊕

(n,m)∈Wk,l

En,m ⊠ Hn,m (2.18)

is then H ×∏(n,m)∈Wk,l
U(pn,m).

2.3 Canonical connections on CP 2

Let us describe the unique G-equivariant connection on the vector bundles associated with

the principal H-bundle

SU(3)
S(U(2)×U(1))−−−−−−−−→ CP 2 . (2.19)

The projective plane can be covered by three patches, and on one of these patches we

choose complex coordinates

Y :=

(
y1

y2

)
and Y † =

(
ȳ1 ȳ2

)
(2.20)

with Y † Y = ȳi yi and i = 1, 2. Introduce the column one-form

β̄ :=

(
β̄1

β̄2

)
with β̄i =

1

γ
dȳi − ȳi

γ2 (γ + 1)
yj dȳj , (2.21)

where

γ :=
√

1 + ȳi yi . (2.22)

– 7 –
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The (1, 0)-forms βi and the (0, 1)-forms β̄i constitute a G-equivariant basis for the complex

vector spaces of forms of type (1, 0) and (0, 1) on CP 2, respectively, and give the horizontal

components of a flat connection A0 tangent to the base of the bundle (2.19) [12].

Consider the G-equivariant field given by

a = − 1

2γ2

(
yi dȳi − ȳi dyi

)
. (2.23)

The one-form (2.23) is the u(1)-valued monopole potential on CP 2 which can be described

as the canonical abelian connection on the Hopf bundle

S5 = U(3)
/

U(2)
U(1)−−−→ CP 2 . (2.24)

The complex line bundle L → CP 2 associated with the principal U(1)-bundle (2.24) is the

monopole bundle over CP 2 which we take to be endowed with the same u(1)-connection

a. It is a representative of the isomorphism class in H1(CP 2; U(1)) ∼= Z corresponding to

the abelian field strength

fu(1) := da = β̄1 ∧ β1 + β̄2 ∧ β2 . (2.25)

Higher degree monopole bundles Lm/2 :=
(
L⊗m

)1/2
are endowed with the connection m

2 a.

These bundles are associated to higher weight irreducible representations (m) of the fibres

of (2.24) but only exist globally when m is even, as only then is the first Chern number
m
2 an integer. Nevertheless, odd values of m are necessary for construction of the U(2)

bundle Q with curvature Fu(2) below and, as we shall see, for considering invariant spinors.

The justification for calling m
2 the “monopole charge” is explained in appendix A. The

monopole field strength of charge m
2 is a (1, 1)-form proportional to the canonical Kähler

two-form on CP 2 defined by

ω = iR2
(
β1 ∧ β̄1 + β2 ∧ β̄2

)
, (2.26)

where R is the radius of the linearly embedded projective line CP 1 ⊂ CP 2 whose homology

class is Poincaré dual to the cohomology class of (2.25).

Consider now the G-equivariant field B ∈ u(2) defined by

B =
1

γ2

(
−1

2 d
(
Y † Y

)
12 + Ȳ dȲ † + Λ dΛ

)
, (2.27)

where

Λ := γ 12 −
1

γ + 1
Y Y † . (2.28)

The one-forms B− 1
2 tr(B) 12 and a on CP 2 give the vertical components of A0 with values

in the tangent space su(2) ⊕ u(1) to the fibre of the bundle (2.19), and together with the

forms (2.21) they obey the Cartan-Maurer equations

dβ̄ +B ∧ β̄ + 2a ∧ β̄ = 0 and dβ −B ∧ β − 2a ∧ β = 0 . (2.29)

– 8 –
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The u(2)-valued curvature

Fu(2) := dB +B ∧B = β̄ ∧ β⊤ = Fsu(2) + 1
2 fu(1) 12 (2.30)

can be expressed in terms of the abelian field strength (2.25) and the curvature

Fsu(2) :=

(
1
2

(
β̄1 ∧ β1 − β̄2 ∧ β2

)
β̄1 ∧ β2

β̄2 ∧ β1 −1
2

(
β̄1 ∧ β1 − β̄2 ∧ β2

)
)

= dB(1) +B(1) ∧B(1) (2.31)

of the gauge potential B(1) = B − 1
2 a 12 ∈ su(2). The one-form B(1) is the su(2)-valued

one-instanton field on CP 2 considered as the canonical connection on the SU(2)-bundle

I = I1 = S5 ×ρ SU(2) (2.32)

associated to the Hopf bundle (2.24) by the diagonal embedding ρ : U(1) → SU(2). Its

curvature Fsu(2) is also a (1, 1)-form on CP 2. Higher rank instanton bundles In are en-

dowed with G-equivariant one-instanton connections B(n) ∈ su(n + 1) and fibre spaces in

(n + 1)-dimensional irreducible representations of the SU(2) fibres of the bundle (2.32). As

explained in appendix A, the bundle In is only globally defined for even values of n. For a

given representation (n,m) of the holonomy group H = S(U(2)×U(1)), the corresponding

homogeneous vector bundle (2.2) is given by (2.17) and can be identified with In ⊗ Lm/2.

2.4 Invariant gauge fields

To determine the generic form of a G-equivariant connection one-form A on the vector

bundle Ek,l → M, let us assume for simplicity that M (and hence M) is a complex

manifold. We decompose the space Ω0,1
(
End

(
Ek,l
))G

using the Whitney sum (2.18). By

Schur’s lemma, corresponding to each weight (n,m) ∈ Wk,l there is a “diagonal” subspace

(
Ω0,1 (End (En,m)) ⊗ 1n+1

)
⊕
(
1pn,m ⊗ Ω0,1 (End (Hn,m))G

)
, (2.33)

in which we can choose a connection An,m on the bundle En,m → M twisted by a G-

equivariant connection on the homogeneous vector bundle Hn,m → CP 2 constructed from

the gauge potentials a and B(1) of section 2.3. To each weight morphism (2.5) there is an

“off-diagonal” subspace

Ω0 (Hom (En,m, En±1,m+3)) ⊗ Ω0,1 (Hom (Hn,m,Hn±1,m+3))
G , (2.34)

in which we twist the Higgs fields φ±n,m by suitable invariant (n± 1 + 1) × (n+ 1) matrix-

valued (0, 1)-forms built from the basis (0, 1)-forms β̄i spanning Ω0,1
(
CP 2

)G
that were

constructed in section 2.3. Thus the condition of G-equivariance uniquely dictates the

form of the gauge connection A in (n+ 1) pn,m × (n ± 1 + 1) pn±1,m+3 blocks.

To appropriately assemble the invariant (0, 1)-forms into rectangular block matrices,

we will use the Biedenharn basis for the irreducible representations Ck,l of SU(3). The

complete set of dk,l orthonormal vectors in this basis set are denoted
∣∣nq,m

〉
, and are labelled

by the isospin quantum numbers n = 2I, q = 2Iz and the hypercharge m = 3Y . These
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states define the spin n
2 representation of the isospin subgroup SU(2) ⊂ SU(3) and are

hypercharge eigenstates with the matrix elements

Hα1

∣∣ n
q , m

〉
= q

∣∣ n
q , m

〉
, (2.35)

E±α1

∣∣ n
q , m

〉
= 1

2

√
(n∓ q) (n ± q + 2)

∣∣ n
q±2 , m

〉
, (2.36)

Hα2

∣∣ n
q , m

〉
= m

∣∣nq , m
〉
, (2.37)

Eα2

∣∣nq , m
〉

= E+
α2

∣∣nq , m
〉

+ E−
α2

∣∣nq , m
〉

(2.38)

:=
√

n−q+2
2(n+1) Λ+

k,l(n,m)
∣∣n+1
q−1 , m+ 3

〉
+
√

n+q
2(n+1) Λ−

k,l(n,m)
∣∣n−1
q−1 , m+ 3

〉
,

Eα1+α2

∣∣nq , m
〉

= E+
α1+α2

∣∣nq , m
〉

+ E−
α1+α2

∣∣nq , m
〉

(2.39)

:=
√

n+q+2
2(n+1) Λ+

k,l(n,m)
∣∣n+1
q+1 , m+ 3

〉
+
√

n−q
2(n+1) Λ−

k,l(n,m)
∣∣n−1
q+1 , m+ 3

〉
,

where

Λ+
k,l(n,m) =

1√
n+2

√(
k+2l

3
+
n

2
+
m

6
+2

)(
k−l
3

+
n

2
+
m

6
+1

)(
2k+l

3
−n

2
−m

6

)
,

Λ−
k,l(n,m) =

1√
n

√(
k+2l

3
−n

2
+
m

6
+1

)(
l−k
3

+
n

2
−m

6

)(
2k+l

3
+
n

2
−m

6
+1

)
. (2.40)

The latter constants are defined for n > 0 and we set Λ−
k,l(0,m) := 0. The analo-

gous relations for E−α2
and E−α1−α2

can be derived by hermitean conjugation of (2.38)

and (2.39), respectively.

For a fixed weight (n,m) ∈ Wk,l, we write the one-instanton connection B(n) = Bn,m

in the (n+ 1)-dimensional irreducible representation of SU(2) as

Bn,m := B11Hα1
+B12Eα1

−
(
B12Eα1

)†

=
∑

q∈Qn

(
q B11

∣∣nq , m
〉〈n

q , m
∣∣+ 1

2
B12

√
(n− q) (n+ q + 2)

∣∣ n
q+2 , m

〉〈n
q , m

∣∣

−1

2
B12

√
(n+ q) (n− q + 2)

∣∣ n
q−2 , m

〉〈n
q , m

∣∣
)

(2.41)

where Qn := {−n,−n+2, . . . , n−2, n}, and Bij are the matrix elements of the su(2)-valued

instanton connection B(1) = B− 1
2 a 12. The monopole potential is represented in this basis

by 1
2 aHα2

. Denote by

Πn,m :=
∑

q∈Qn

∣∣nq , m
〉〈n

q , m
∣∣ (2.42)

the projection of Ck,l
∣∣
H

onto the irreducible representation (n,m) of H = SU(2) × U(1).

We further write

β̄± = β̄1E±
α1+α2

+ β̄2E±
α2

=
∑

(n,m)∈Wk,l

β̄±n,m , (2.43)
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where

β̄±n,m :=
Λ±

k,l(n,m)
√

2(n + 1)

∑

q∈Qn

(√
n± q + 1 ± 1 β̄1

∣∣n±1
q+1 , m+ 3

〉〈n
q , m

∣∣

+
√
n∓ q + 1 ± 1 β̄2

∣∣n±1
q−1 , m+ 3

〉〈n
q , m

∣∣
)

(2.44)

are the (n± 1 + 1)× (n+ 1) matrix blocks of G-equivariant elementary bundle morphisms

between Hn,m and Hn±1,m+3, together with their hermitean conjugates β±n,m := β̄±n,m
†.

By introducing the projection πn,m onto the sub-bundleEn,m →M , the anti-hermitean

G-equivariant gauge connection A on the bundle (2.18) over M × CP 2 can be written as

A =
∑

(n,m)∈Wk,l

(
An,m ⊗ Πn,m + πn,m ⊗

(
Bn,m +

m

2
a Πn,m

)
(2.45)

+φ+
n,m ⊗ β̄+

n,m + φ−n,m ⊗ β̄−n,m − φ+
n,m

† ⊗ β+
n,m − φ−n,m

† ⊗ β−n,m

)
.

Note that when j+ = k
2 , one has Λ+

k,l(n,m) = 0 for all j− and when j− = 0, one has

Λ−
k,l(n,m) = 0 for all j+, so the corresponding fields β̄±n,m and φ±n,m also vanish. These

two cases correspond respectively to the rightmost and bottom edges in figure 1. We can

thus associate the Higgs fields φ+
n,m with the horizontal links in figure 1 and φ−n,m with the

vertical links. Then there are a total of 2k l + k + l independent fields φ±n,m.

The matrix elements of the curvature two-form

F = dA + A ∧A (2.46)

are straightforwardly computed in the Biedenharn basis by using (2.29)–(2.31) [12]. For

each weight (n,m) ∈ Wk,l one finds the diagonal matrix elements

Fn,m ; n,m = Fn,m ⊗ 1n+1 +
(
1pn,m − φ+

n,m
†
φ+

n,m

)
⊗
(
β+

n,m ∧ β̄+
n,m

)

+
(
1pn,m − φ−n,m

†
φ−n,m

)
⊗
(
β−n,m ∧ β̄−n,m

)

+
(
1pn,m − φ+

n−1,m−3 φ
+
n−1,m−3

† )⊗
(
β̄+

n−1,m−3 ∧ β+
n−1,m−3

)

+
(
1pn,m − φ−n+1,m−3 φ

−
n+1,m−3

† )⊗
(
β̄−n+1,m−3 ∧ β−n+1,m−3

)
(2.47)

where Fn,m = dAn,m +An,m∧An,m is the curvature of the vector bundle En,m →M , while

the non-vanishing off-diagonal matrix elements are given by

Fn±1,m+3 ; n,m = Dφ±n,m ∧ β̄±n,m :=
(
dφ±n,m +An±1,m+3 φ±n,m − φ±n,mAn,m

)
∧ β̄±n,m (2.48)

and

Fn+1,m+3 ; n+1,m−3 =
(
φ+

n,m φ−n+1,m−3−φ−n+2,m φ+
n+1,m−3

)
⊗
(
β̄+

n,m ∧ β̄−n+1,m−3

)
, (2.49)

Fn+1,m+3 ; n−1,m+3 =
(
φ+

n,m φ−n,m
†−φ−n+1,m+3

†
φ+

n−1,m+3

)
⊗
(
β̄+

n,m ∧ β−n,m

)
(2.50)

along with their hermitean conjugates Fr,s ;n,m = −(Fn,m ; r,s)† for (r, s) 6= (n,m). The ma-

trix elements (2.48) define bi-fundamental covariant derivatives Dφ±n,m of the Higgs fields.

The matrix one-form products appearing above are written out explicitly in appendix B.
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2.5 Invariant spinor fields

Let M be a complex manifold, so that d = dimR(M) is even, and let K =
∧d/2

C
(T ∗M) be its

canonical line bundle. If c1(K) = 0 mod 2 then M is a spin manifold, while generically K

determines a canonical spinc-structure on M . The corresponding spinc-bundles are denoted

∆ (M) ∼=
∧0,•(TM) and are obtained by twisting the usual spinor bundles associated to

the principal Spin(d)-bundle PSpin(d) →M by K−1/2. By spinor fields on M or M we shall

always refer to sections of such spinc-bundles.

The equivariant dimensional reduction of massless Dirac spinors on M×CP 2 is defined

with respect to (twisted) symmetric fermions on M . They act as intertwining operators

connecting induced representations of the holonomy group H = SU(2) × U(1) in the U(p)

gauge group, and also in the twisted spinor module ∆ (M) which admits the isotopical

decomposition

∆ (M) =
⊕

(n,m)∈Wk,l

∆n,m ⊗ (n,m) with ∆n,m = HomH

(
(n,m) , ∆ (M)

)
(2.51)

obtained by restricting ∆(M) to representations of H ⊂ Spinc(d) = Spin(d)×Z2
U(1). By

Frobenius reciprocity, the multiplicity spaces may be identified as

∆n,m =
(
∆ (M)∨ ⊗ Ω0(Hn,m)

)G
, (2.52)

and hence the isotopical decomposition (2.51) is realized explicitly by constructing sym-

metric fermions on M as SU(3)-invariant spinors on M × CP 2. They are associated with

the eigenspinors of the twisted Dirac operator on CP 2, which we describe in some detail.

There is a global obstruction to defining spinors on CP 2, but a spinc structure can be

defined by twisting the usual spinor bundle with half-integer powers of the monopole line

bundle L. At the level of the twisted Dirac operator, this can be achieved by changing the

coupling to the U(1) component of the invariant gauge potential (2.45), and we therefore

propose this as a method for describing spinors globally on CP 2. The complete spectrum

of the Dirac operator on CP 2, coupled to arbitrary instanton and monopole backgrounds,

was worked out in [16]. The eigenspinors for an arbitrary monopole background, without

instantons, were constructed in the context of the fuzzy projective plane CP 2
F in [17],1 while

the number of zero modes in a rank two instanton background with arbitrary monopole

charge was originally computed in [3]. The number of spinor harmonics in a generic in-

stanton background and with arbitrary monopole number is computed in appendix C. In

this section we will restrict attention to zero modes of the Dirac operator on CP 2.

Recall that the pairs (n,m) ∈ Wk,l appearing in (2.45) have the same even/odd integer

parity. Suppose we try to write down a Dirac operator acting on spinors on M × CP 2

coupled to the gauge connection (2.45), transforming under some fixed representation ρ

of the subgroup
∏

(n,m)∈Wk,l
SU(pn,m) of the gauge group and under the same weights of

U(2) as those occurring in the decomposition (2.45). Such spinors couple to topologically

non-trivial SU(2) × U(1) gauge potentials on CP 2. Then there will be an inconsistency

because the index of the Dirac operator is fractional, reflecting the fact that spinor fields

1Monopole line bundles on CP 2
F are also discussed in [18].
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are never globally well-defined on CP 2 in these backgrounds. For a generic SU(2) × U(1)

representation (n,m), the index is calculated in appendix C to be

νb;n =
1

2
(n+ 1) (b+ 1) (n + b+ 2) (2.53)

where b = m−n−3
2 . If n and m have the same parity then b is not an integer.

To avoid this obstruction, we modify the Dirac operator by twisting it with a half-

integer power Lec , c̃ ∈ Z + 1
2 of the monopole line bundle L. The Dirac operator acting

on four-component twisted spinor fields χn,m;ec ∈ Ω0,•(Hn,m+2 ec ) on CP 2, coupled to the

rank n+1 instanton connection and magnetic monopole potential of charge m
2 + c̃ , is then

D/
CP 2 =

∑

(n,m)∈Wk,l

(
∂/

CP 2 Πn,m +Bn,m/ +
(m

2
+ c̃

)
a/ Πn,m

)
, (2.54)

where ∂/
CP 2 is the naive Dirac operator on CP 2 involving only the spin connection. The

index for weight (n,m) is again given by (2.53), but now this is an integer when b =

c̃ + m−n−3
2 . Since b depends only on (n,m), and on c̃ which is half-integer, we denote it by

bn,m+c where c = 2 c̃ is an odd integer. Then the index for a given irreducible U(2)-module

(n,m) is

νn,m =
1

2
(n+ 1) (bn,m+c + 1) (n + bn,m+c + 2) . (2.55)

For fixed c̃ we shall denote the positive/negative chirality zero modes of the Dirac

operator (2.54) by χ±
n,m ∈ C

2. From the explicit construction in [17], it is known that

for n = 0 the index coincides with the total number of zero modes, so either all spinor

harmonics have positive chirality or all have negative chirality. We will assume that the

same property is true for all n ≥ 1. Although we do not have a rigorous proof, this seems

plausible given the natural identification of the virtual zero mode eigenspaces of D/
CP 2 with

irreducible representations of SU(3) discussed in appendix C.2 With this assumption, in a

suitable basis there are chiral decompositions

D/
CP 2 =

∑

(n,m)∈Wk,l

(
0 D/+

n,m

D/−
n,m 0

)
(2.56)

of (2.54) into twisted Dolbeault-Dirac operators D/±
n,m, such that the index (2.55) is the

virtual dimension of the vector space ker
(
D/+

n,m

)
⊖ ker

(
D/−

n,m

)
. Then χ±

n,m 6= 0 only when

(n,m) ∈ W±
k,l, where

W±
k,l :=

{
(n,m) ∈ Wk,l

∣∣ ± νn,m > 0
}
. (2.57)

We fix a basis of chiral/antichiral spinor harmonics χ±
n,m;ℓ ∈ ker

(
D/±

n,m

)
, ℓ = 1, . . . , |νn,m|

for each weight (n,m) ∈ W±
k,l. They transform for each ℓ in the (n + 1)-dimensional

irreducible representation of the isospin subgroup SU(2) ⊂ H of the holonomy group.

2In any case, if this is not true then the same qualitative conclusions below will hold, but the notation

would have to be modified to incorporate the extra spinor harmonics.

– 13 –



J
H
E
P
0
8
(
2
0
0
9
)
0
3
8

We can now use (2.52) to take tensor products of the Dirac zero modes on CP 2 with

(twisted) Dirac spinors ψn,m;ℓ, ψ̃n,m;ℓ ∈ Ω0,•(ρ(En,m)
)
, ℓ = 1, . . . , |νn,m| on M to produce

fermion fields

Ψ+
n,m =

νn,m∑

ℓ=1

ψn,m;ℓ ⊗ χ+
n,m;ℓ and Ψ−

n,m = 0 for (n,m) ∈ W
+
k,l ,

Ψ−
n,m =

|νn,m|∑

ℓ=1

ψ̃n,m;ℓ ⊗ χ−
n,m;ℓ and Ψ+

n,m = 0 for (n,m) ∈ W
−
k,l . (2.58)

Note that the spinors Ψ±
n,m are not chiral on M × CP 2. From these fields we construct a

G-equivariant Dirac spinor field on M = M × CP 2 as

Ψ =

(
Ψ+

Ψ−

)
=

⊕

(n,m)∈Wk,l

(
Ψ+

n,m

Ψ−
n,m

)
. (2.59)

3 Quiver gauge theory

In this section we shall work out the equivariant dimensional reduction of pure massless

Yang-Mills-Dirac theory on the manifold (2.12). We will emphasise the roles played by the

SU(2)-instanton and U(1)-monopole background fields on CP 2, particularly how they affect

the vacuum structure of the quiver gauge theory corresponding to the lattice of figure 1.

We shall also compare the induced equivariant gauge theory on M with that obtained via

dimensional reduction over CP 1 [10].

3.1 Reduction of the Yang-Mills action

We endow the manifold M with local real coordinates x = (xµ) ∈ R
d, where the indices

µ, ν, . . . run through 1, . . . , d. The metric

ds2 = GAB dxA ⊗ dxB (3.1)

on M = M ×CP 2 will be taken to be the direct product of a chosen riemannian metric on

M and the canonical SU(3)-symmetric Kähler metric on CP 2 corresponding to the two-

form (2.26), where the indices A,B, . . . run over 1, . . . , d + 4. Working in the basis βi, β̄i

of invariant forms on CP 2 and in the coordinates above, it takes the form

ds2 = Gµν dxµ ⊗ dxν + 2R2
(
β1 ⊗ β̄1 + β2 ⊗ β̄2

)
. (3.2)

The line element (3.2) has mass dimension −2.

The pure Yang-Mills lagrangian on M = M × CP 2 is given by

Lk,l
YM = − 1

4g̃2

√
|G| trp×p FAB FAB

= − 1

4g̃2

√
|G| trp×p

[
Fµν Fµν +

1

2R2
Gµν

(
Fµi Fνı̄ + Fµı̄ Fνi

)

− 1

2R4

(
|F11̄|2 + |F22̄|2 + 2|F12̄|2 + 2|F12|2

) ]
(3.3)
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where we use the matrix notation |F|2 := 1
2

(
F† F + F F†), and i = 1, 2 labels components

along CP 2 in the basis used in (3.2). The (d + 4)-dimensional U(p) Yang-Mills coupling

constant g̃ has the standard mass dimension −d
2 in order to make (3.3) dimensionless. We

substitute (2.47)–(2.50) into (3.3), and take the trace over the representation space (n,m)

for each weight (n,m) ∈ Wk,l making use of the identities of appendix B. We then integrate

over CP 2 using the normalization
∫

CP 2 βvol = 1, where βvol := 1
2π2 β

1 ∧ β̄1 ∧ β2 ∧ β̄2 is the

unit volume form of CP 2.

After some calculation and rescaling φ±n,m → Λ±
k,l(n,m)−1 φ±n,m, one finds that the

dimensional reduction of the corresponding Yang-Mills action

Sk,l
YM :=

∫

M×CP 2

dd+4x Lk,l
YM (3.4)

is given by

Sk,l
YM =

(
π R2

)2

2g̃2

∫

M
ddx

√
|G|

∑

(n,m)∈Wk,l

trpn,m×pn,m

[
(n+ 1)

(
Fn,m

)†
µν

(
Fn,m

)µν

+
n+2

2R2

(
Dµφ

+
n,m

)† (
Dµφ+

n,m

)
+
n+1

2R2

(
Dµφ

+
n−1,m−3

) (
Dµφ+

n−1,m−3

)†

+
n

2R2

(
Dµφ

−
n,m

)† (
Dµφ−n,m

)
+
n+1

2R2

(
Dµφ

−
n+1,m−3

) (
Dµφ−n+1,m−3

)†

+
n+2

2R4

(
Λ+

k,l(n,m)21pn,m−φ+
n,m

†φ+
n,m

)2
+

n

2R4

(
Λ−

k,l(n,m)21pn,m−φ−n,m
† φ−n,m

)2

+
(n+1)2

2nR4

(
Λ+

k,l(n− 1,m− 3)2 1pn,m−φ+
n−1,m−3 φ

+
n−1,m−3

†
)2

(3.5)

+
(n+1)2

2(n+2)R4

(
Λ−

k,l(n+ 1,m− 3)2 1pn,m−φ−n+1,m−3 φ
−
n+1,m−3

†
)2

+
n (n+2)

2(n+1)R4

∣∣∣φ+
n,m φ−n,m

†−
Λ+

k,l(n,m)Λ−
k,l(n,m)

Λ+
k,l(n−1,m+3)Λ−

k,l(n+1,m+3)
φ−n+1,m+3

†φ+
n−1,m+3

∣∣∣
2

+
n+3

6R4

∣∣∣φ+
n,m φ−n+1,m−3−

Λ+
k,l(n,m)Λ−

k,l(n + 1,m− 3)

Λ+
k,l(n+ 1,m− 3)Λ−

k,l(n+ 2,m)
φ−n+2,m φ+

n+1,m−3

∣∣∣
2
]
.

From (2.48) it follows that the U(1) factor in the structure group U(p) ∼= U(1) × SU(p)

does not enter the bicovariant derivatives of the rectangular scalar fields φ±n,m. We can

therefore restrict to gauge group SU(p), and the decomposition (2.16) is then modified to

SU(p) −→ U(1)(k+1) (l+1)−1 ×
∏

(n,m)∈Wk,l

SU(pn,m) with
∑

(n,m)∈Wk,l

(n+ 1) pn,m = p

(3.6)

where (k + 1) (l + 1) is the number of elements of the weight set Wk,l.

The gauge coupling in d dimensions should have mass dimension 2 − d
2 , and therefore

we define g2 = g̃2/2(π R2)2 as the d-dimensional gauge coupling constant. We then rescale

φ±n,m −→ 2g R√
n+1±1

φ±n,m and An,m −→ g√
n+1

An,m (3.7)

so that the scalar and gauge fields have the correct canonical dimensions and kinetic term

normalizations for a d-dimensional field theory (with dimensionless coordinates). The
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Higgs potential in the scalar fields φ±n,m in (3.5) generically leads to spontaneous symmetry

breaking, as a direct consequence of the non-trivial background instanton and monopole

charges on CP 2. Since this potential is a sum of non-negative terms, it is easy to write

down the general structure of the vacua in the Higgs sector of the field theory. In particular,

they obey the equations

φ±n,m
† φ±n,m =

(n+ 1 ± 1)Λ±
k,l(n,m)2

4g2 R2
1pn,m ,

φ±n,m φ±n,m
† =

(n+ 1 ± 1)Λ±
k,l(n,m)2

4g2 R2
1pn±1,m+3

. (3.8)

The vanishing of the last two terms in (3.5) represent the relations of the quiver in

figure 1 [12] and has a natural algebraic meaning in terms of the operators

φ± :=
∑

(n,m)∈Wk,l

Λ±
k,l(n,m)−1 φ±n,m ⊗

( ∑

q∈Qn

(√
n± q + 1 ± 1

∣∣n±1
q+1 , m+ 3

〉〈n
q , m

∣∣

+
√
n∓ q + 1 ± 1

∣∣n±1
q−1 , m+ 3

〉〈n
q , m

∣∣
) )

(3.9)

defined with respect to the Biedenharn basis of section 2.4. Then, in addition to (3.8), the

Higgs vacua are determined by the matrix commutativity relations

[
φ+ , φ−] = 0 and

[
φ+ , φ− †

]
= 0 . (3.10)

When pn,m = r for all weights (n,m) ∈ Wk,l, the gauge symmetry reduction is given by

SU(p) −→ U(1)(k+1) (l+1)−1 × SU(r)(k+1) (l+1) with p = r dk,l (3.11)

where dk,l are the dimensions (2.4). In this special case an explicit solution of (3.8) is given

by φ±n,m = φ±n,m
0, where

φ±n,m
0 =

√
n+ 1 ± 1 Λ±

k,l(n,m)

2g R
U±

n,m (3.12)

for (n,m) ∈ Wk,l. This solution involves 2k l+k+l unitary degrees of freedom U±
n,m ∈ U(r),

one for each Higgs field φ±n,m. We can associate each such unitary group element with a

link of the lattice depicted in figure 1, which defines a gauge field on the quiver lattice.

However, they are not all independent, because the commutation relations (3.10) require

that they obey

U−
n+1,m+3 U

+
n,m = U+

n−1,m+3 U
−
n,m , (3.13)

which is equivalent to requiring that their oriented product around the four links of any

plaquette in the quiver lattice must be equal to unity. Thus the Higgs vacua correspond

to flat connections of lattice gauge theory on the finite quiver lattice. However, there is no

vacuum moduli space, because we can set k l + k + l of these unitary degrees of freedom

to the identity using a gauge transformation in the U(r)(k+1) (l+1)−1 subgroup of (3.11),
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and then eliminate the remaining ones using the k l plaquette relations (3.13). Thus the

solution (3.12) breaks the gauge symmetry of the d-dimensional field theory on M to the

diagonal SU(r) subgroup, leaving (k l+ k+ l) r2 massive gauge bosons and (3k l+ k+ l) r2

physical Higgs fields. This mechanism induces physical masses proportional to 1
R . In

subsequent sections we shall work out some explicit examples.

3.2 Reduction of the Dirac action

To describe the form of the fermionic action for the invariant spinor fields constructed

in section 2.5, we first need to set up some Clifford algebra notation. The left-invariant

one-forms defined in (2.21) are proportional to orthonormal one-forms on CP 2 and they

define vierbeins eia on CP 2 through

βi =
1

R
eia dya and β̄i =

1

R
eı̄ā dȳa , (3.14)

where i = 1, 2 is an orthonormal index and a = 1, 2 is a coordinate index. With M a com-

plex manifold as in section 2.5, the generators of the Clifford algebra Cℓ
(
M × CP 2

)
obey

ΓA ΓB + ΓB ΓA = −2GAB 12d/2+2 with A,B = 1, . . . , d+ 4 . (3.15)

The gamma-matrices in (3.15) may be decomposed as

{
ΓA
}

=
{
Γµ,Γa,Γā

}
with Γµ = γµ⊗14 , Γa = γ⊗τa and Γā = γ⊗τ ā (3.16)

where our convention is Γa Γā + Γā Γa = −Gaā 12d/2+2 in complex coordinates. The

2d/2 × 2d/2 matrices γµ = −(γµ)† act locally on the twisted spinor module ∆ (M) over the

Clifford algebra bundle Cℓ(M) →M with the relations

γµ γν + γν γµ = −2Gµν 12d/2 with µ, ν = 1, . . . , d , (3.17)

while

γ =
i d/2

√
G

d!
ǫµ1···µd

γµ1 · · · γµd with (γ)2 = 12d/2 and γ γµ = −γµ γ (3.18)

is the corresponding chirality operator. Here ǫµ1...µd
is the Levi-Civita symbol with

ǫ12···d = +1.

The coordinate basis gamma-matrices τa and τ ā on CP 2 are related to their orthonor-

mal counterparts by

σi = i eia τ
a and σı̄ = − i eı̄ ā τ

ā (3.19)

with the normalisation chosen so that

σi σ̄ + σ̄ σi = δij14 . (3.20)

It is a standard construction [19] to choose a basis in which
(
σi
)2

= (σı̄ )2 = 0, and to asso-

ciate σı̄ and σi respectively with creation and annihilation operators acting on a fermionic

Fock space with vacuum vector |Ω〉 such that σi|Ω〉 = 0. A general Fock space state

|χ〉 := χ0(y, ȳ) ⊗ |Ω〉 + χı̄(y, ȳ) ⊗ σı̄|Ω〉 + 1
2 χı̄ ̄(y, ȳ) ⊗ σı̄ ̄|Ω〉 , (3.21)
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with σı̄ ̄ := 1
2 [σı̄, σ̄ ], corresponds locally to a Dirac spinor on CP 2, though of course it may

not extend to a global spinor field. The chirality operator on CP 2 is σ̃ =
[
σ1, σ1̄

] [
σ2, σ2̄

]

and χı̄ are the two components of a negative chirality spinor, while χ0 and χ1̄ 2̄ are the

two components of a positive chirality spinor. In terms of holonomy, χı̄ is a doublet of

SU(2) while χ0 and χ1̄ 2̄ are both SU(2)-singlets.

An alternative way of understanding these representation assignments, which will be

useful in later sections, follows from the general construction in [16]. Spinor fields on CP 2

transform in the 4 × 4 (reducible) spinor representation of H = SU(2) × U(1) given by

ΣEα1
= σ1 σ2̄ and ΣE−α1

= ΣEα1

† = σ2 σ1̄ ,

ΣHα1
= σ1 σ1̄ − σ2 σ2̄ and ΣHα2

= σ1 σ1̄ + σ2 σ2̄ − 14 . (3.22)

These generators constitute a traceless representation of the su(2)⊕u(1) subalgebra of (2.3),

as is easily checked using (3.20). The representation content is revealed by evaluating the

second order Casimir invariants of SU(2) and U(1) to get

1

2

∣∣ΣEα1

∣∣2 +
1

2

(
ΣHα1

)2
=

3

8

(
14 − σ̃

)
and

1

2

(
ΣHα2

)2
=

1

8
(14 + σ̃ ) . (3.23)

It follows that negative chirality spinors live in the representation (1, 0), while positive

chirality spinors are given by a pair of SU(2)-singlets with opposite hypercharge Y = ± 1

in the H-module (0,± 3).

These states correspond respectively to the instanton bundle I, with fibres transform-

ing under the representation (1, 0), and the monopole line bundles L± 3/2, with fibres trans-

forming under the representation (0,± 3). None of these bundles is globally well-defined

of course. In order to get well-defined bundles on CP 2, we must tensor the would-be spin

bundle with non-trivial gauge bundles In ⊗ L em/2 whose fibres transform according to the

representation (n, m̃ ) of SU(2)×U(1) with n and m̃ = m+ c of opposite even/odd integer

parity. These bundles do not exist on their own but, as described in section 2.5, their

tensor product does. The complete SU(2) × U(1) representation content of these bundles

is given by the decomposition into irreducible modules

(n, m̃ ) ⊗
( [

(1, 0)
]
⊕
[
(0, 3) ⊕ (0,−3)

] )
=
[
(n+ 1, m̃ ) ⊕ (n− 1, m̃ )

]

⊕
[
(n, m̃+ 3) ⊕ (n, m̃− 3)

]
(3.24)

where the square brackets segregate the spinor chiralities.

For each weight (n,m) ∈ Wk,l, the complete spectrum of the twisted Dirac operator on

CP 2 consists of 4(n+1) families of infinite discrete sequences of eigenvalues, one family for

each state on the right-hand side of (3.24). The non-zero eigenvalues come in positive and

negative pairs giving the 2(n + 1) sequences listed below. The spectrum therefore grows

rapidly more complicated as n increases. Note that at least some of the corresponding

eigenspinors must necessarily have different assignments of SU(2)×U(1) quantum numbers

for their two chiral components. After dimensional reduction, the eigenspinors on CP 2

with non-zero eigenvalues will induce a total of 4dk,l infinite discrete families of fermion
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fields on M with both a kinetic mass term, given by the Dirac eigenvalues on CP 2, and

Yukawa couplings.

The eigenvalues and their multiplicities can be read off from the explicit formulas of [16,

appendix B]. There are 2n+2 infinite sequences, with n+2 families coming from the states

in (n′, m̃ ) with n′ = n+1 and n families coming from the states with n′ = n−1. Denoting

the eigenvalues by λN
R and their degeneracies by dN , we distinguish each sequence by n+2

integers η+ and n integers η− with

λ2
N = N (N + n+ 3) + η2

+ +
|η+|
2

(
2N + n+ 3

)
− η+

2

∣∣ m̃
∣∣+ n+ 2 , (3.25)

dN =
1

8

(
2N+n+3+ǫ+

(
4η+−| m̃ |

))(
2N+n+3−ǫ+

(
2η+−| m̃ |

))(
2N+n+3+|η+|

)

for n′ = n+ 1, and

λ2
N = N (N + n+ 1) + η2

− +
|η−|
2

(
2N + n+ 1

)
− η−

2

∣∣ m̃
∣∣ , (3.26)

dN =
1

8

(
2N+n+1+ǫ−

(
4η−−| m̃ |

))(
2N+n+1−ǫ−

(
2η−−| m̃ |

))(
2N+n+1+|η−|

)

for n′ = n− 1, where

η± = −1

2

(
n± 1 + | m̃ |

)
, . . . ,

1

2

(
n± 1 + | m̃ |

)
. (3.27)

In both cases N = 0, 1, . . ., while ǫ± = 1 for η± ≥ 0 and ǫ± = −1 for η± < 0. We shall see

some explicit examples in the following sections.

We will now construct the Ek,l-twisted Dirac operator D/ = ΓA DA on M = M ×CP 2,

corresponding to the equivariant gauge potential A in (2.45) and acting on the spinor

fields (2.59), in terms of the spinc Dirac operator (2.54) on CP 2 and the Ek,l-twisted spinc

Dirac operator D/ = γµDµ on M . The latter operator is given by

D/ =
∑

(n,m)∈Wk,l

(
∂/M − 1

2 κ/ +An,m/
)
⊗ πn,m (3.28)

where ∂/M is the naive Dirac operator on M involving only the spin connection on the prin-

cipal SO(d)-bundle PSO(d) →M and the generators of SO(d) in the spinor representation,

while κ is an anti-hermitean connection on the canonical line bundle K →M . Using (3.14)

and (3.19) one then finds

D/ = D/ ⊗ 14 + γ ⊗D/
CP 2 (3.29)

+
1

R

∑

(n,m)∈Wk,l

(
φ+

n,m γ ⊗ σ+
n,m + φ−n,m γ ⊗ σ−n,m−φ+

n,m
†
γ ⊗ σ+

n,m
† − φ−n,m

†
γ ⊗ σ−n,m

†
)

where, in complete analogy with (2.43) and (2.44), we have defined

σ± = iσ1̄ ⊗ E±
α1+α2

+ iσ2̄ ⊗ E±
α2

=
∑

(n,m)∈Wk,l

σ±n,m . (3.30)
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Using the twisted Dirac operator (3.29), we may define an euclidean fermionic action

functional on the space of L2-sections (2.59) by

Sk,l
D :=

∫

M×CP 2

dd+4x
√
|G| Ψ†D/Ψ , (3.31)

where Ψ has canonical mass dimension 1
2 (d+3). In lorentzian signature the adjoint spinor

Ψ† should be replaced by Ψ := 1√
−G00

Ψ†Γ0. For definiteness, we shall only consider the

case where the spinor field Ψ transforms under the fundamental representation of the initial

gauge group SU(p). Other fermion representations of SU(p) can be treated similarly. We

substitute (2.58) and integrate over CP 2 in (3.31). The zero modes of D/
CP 2 can be chosen

to be orthogonal and normalised such that
∫

CP 2

χ±
n′,m′;ℓ′

† χ±
n,m;ℓ βvol = δn,n′ δm,m′ δℓ,ℓ′ and

∫

CP 2

χ∓
n′,m′;ℓ′

† χ±
n,m;ℓ βvol = 0 , (3.32)

where the second equality follows from the fact that the sets W+
k,l and W−

k,l in (2.57) are

disjoint. Since χ±
n,m;ℓ are spinor harmonics on CP 2, one might naively expect that the

fermion fields ψn,m;ℓ and ψ̃n,m;ℓ will be massless spinors on M . However, the Higgs field

terms in (3.29) can give rise to Yukawa couplings and, due to spontaneous symmetry

breaking, induce masses of order 1
R to the d-dimensional spinors. We shall now explain

precisely how this comes about.

Recall that the fermion zero modes depend on the twisting parameter c = 2 c̃ in-

troduced in section 2.5. We will now show how to uniquely fix this free parameter such

that the reduction of the action (3.31) generically contains Yukawa couplings. We consider

background gauge fields on CP 2 for which the index (2.55) takes values νn,m = ± 1. The

spinor harmonic modes are particularly simple in this case [14]. They arise as a result of

the gauge connections of the SU(2)×U(1) gauge theory on CP 2 exactly cancelling the spin

connection, so that the Dirac operator truncates to the (untwisted) Dolbeault operator on

CP 2 and the components of the spinors in (3.21) are simply constants. Note that this can

only occur when n = 0, 1, and hence by (2.10) for m = −2(k − l),−2(k − l) ± 3. For any

given irreducible SU(3)-representation Ck,l, it is easy to deduce from (2.55) that the unique

spinc structure on CP 2 accommodating these fields has twisting parameter

c = 2(k − l) − 3 . (3.33)

Then the chiral fermion mode with (n,m) = (0,−2(k − l)) (and νn,m = +1) will have a

Yukawa coupling to the antichiral mode with (n,m) = (1,−2(k− l)+3) (and νn,m = −1).3

The positive chirality mode with respect to the Biedenharn basis of section 2.4 is

given by

χ+
0,−2(k−l) = |Ω〉 ⊗

∣∣00 , −2(k − l)
〉

(3.34)

while the negative chirality mode, which is a doublet of the SU(2) gauge theory on CP 2, is

χ−
1,−2(k−l)+3 =

1√
2

(
σ1̄|Ω〉 ⊗

∣∣11 , −2(k − l) + 3
〉

+ σ2̄|Ω〉 ⊗
∣∣ 1
−1 , −2(k − l) + 3

〉)
. (3.35)

3For l ≥ 1, one can alternatively choose c = 2(k − l) + 3, and couple the chiral mode with (n, m) =

(0,−2(k − l)) to the antichiral mode with (n, m) = (1,−2(k − l) − 3).
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From the explicit formulas (2.40) one finds Λ−
k,l(0,−2(k − l)) = Λ−

k,l(1,−2(k − l) + 3) = 0,

and consequently the only contributing operator from (3.30) is given by

σ+
0,−2(k−l) = i√

2

√
k (l+2)

(
σ1̄⊗

∣∣11 ,−2(k−l)+3
〉〈0

0 ,−2(k−l)
∣∣+σ2̄⊗

∣∣ 1−1 ,−2(k−l)+3
〉〈0

0 ,−2(k−l)
∣∣
)

(3.36)

with

σ+
0,−2(k−l)χ

+
0,−2(k−l) = i

√
k (l + 2) χ−

1,−2(k−l)+3 ,

σ+
0,−2(k−l)χ

−
1,−2(k−l)+3 = i

√
k (l + 2) χ+

0,−2(k−l) . (3.37)

These are then the only surviving contributions from the Higgs field terms in (3.29) after

integration over CP 2 using (3.32).

We now rescale the bosonic fields as in (3.7) and the fermionic fields as

ψn,m;ℓ −→ 1√
2π R2

ψn,m;ℓ and ψ̃n,m;ℓ −→ 1√
2π R2

ψ̃n,m;ℓ , (3.38)

in order to give all fields the correct canonical dimensions and kinetic term normalizations

on M . Putting everything together, the dimensional reduction of the Dirac action (3.31)

is given by

Sk,l
D =

∫

M
ddx

√
|G|




∑

(n,m)∈W
+

k,l

νn,m∑

ℓ=1

(
ψn,m;ℓ

)†
D/
(
ψn,m;ℓ

)

+
∑

(n,m)∈W
−

k,l

|νn,m|∑

ℓ=1

(
ψ̃n,m;ℓ

)†
D/
(
ψ̃n,m;ℓ

)

+
√

2k (l + 2) g
((
ψ0,−2(k−l)

)†
φ+

0,−2(k−l)
† ψ1,−2(k−l)+3

+
(
ψ1,−2(k−l)+3

)†
φ+

0,−2(k−l) ψ0,−2(k−l)

)]
, (3.39)

where we have abbreviated ψ0,−2(k−l) := ψ0,−2(k−l);0 and ψ1,−2(k−l)+3 := γψ̃1,−2(k−l)+3;0.

The fermion fields ψn,m;ℓ and ψ̃n,m;ℓ for each ℓ = 1, . . . , |νn,m| transform in the fundamental

representation of SU(pn,m). The dimensionally reduced field theory thus contains Yukawa

interactions for all k > 0. If the Higgs field φ+
0,−2(k−l) acquires a non-zero vacuum expecta-

tion value φ+
0,−2(k−l)

0 by dynamical symmetry breaking, then the fermion fields ψ0,−2(k−l)

and ψ1,−2(k−l)+3 acquire a mass matrix. In the special case (3.12), the positive eigenvalue

of this mass matrix is

µk,l =
k (l + 2)√

2R
. (3.40)

3.3 Chain reductions

To exemplify the quantitative differences between the quiver gauge theory defined by (3.5)

and those studied in [10] which are obtained via SU(2)-equivariant dimensional reduction
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.  .  .
(1,3−2k)

φ0,−2k
+ φ+

k−1,k−3

(k,k)(0,−2k)

Figure 2. Quiver diagram for the representation Ck,0 of SU(3).

over the projective line CP 1, let us set l = 0 and consider the reductions associated to the

irreducible SU(3)-representations Ck,0. In this case j− = 0 in (2.10), so that the monopole

charges and instanton ranks are correlated as (n,m) = (n, 3n − 2k) with n = 0, 1, . . . , k.

With pn := pn,3n−2k, the explicit gauge symmetry breaking pattern is given in this limit by

SU(p) −→ U(1)k ×
k∏

n=0

SU(pn) with
k∑

n=0

(n + 1) pn = p . (3.41)

Although similar to the symmetry reduction patterns of [10], the rank decompositions

in (3.41) are controlled explicitly by the instanton ranks n+ 1.

From (2.40) one also finds Λ−
k,0(n, 3n−2k) = 0 and Λ+

k,0(n, 3n−2k) =
√

(n+ 1) (k − n).

It follows that β̄−n,3n−2k = 0 for all n = 0, 1, . . . , k, and consequently all fields φ−n,m are absent

from (2.45). Thus in this case the two-dimensional quiver lattice of equivariant fields on

M labelled by Wk,l truncates to a one-dimensional chain depicted in figure 2

Denote φn+1 := φ+
n,3n−2k and An := An,3n−2k, with

Fn = dAn+
g√
n+1

An ∧An and Dφn+1 = dφn+1+g

(
1√
n+2

An+1φn+1−
1√
n+1

φn+1A
n

)
.

(3.42)

Then the action (3.5) reduces to

Sk,0
YM =

∫

M
ddx

√
|G|

[
k∑

n=0

trpn×pn

(
1

4

(
Fn

µν

)† (
Fn µν

)
+
(
Dµφn+1

) (
Dµφn+1

)†

+
(
Dµφn

)† (
Dµφn

)
)

+ V (φ1, . . . , φk)

]
(3.43)

with φ0 = φk+1 = 0 and the Higgs potential

V (φ1, . . . , φk) = 2g2
k∑

n=0

trpn×pn

[
1

n+ 2

(
(n+ 1) (n + 2) (k − n)

4g2 R2
1pn − φ†n+1 φn+1

)2

+
1

n

(
n (n+ 1) (k − n+ 1)

4g2 R2
1pn − φn φ

†
n

)2
]
. (3.44)

This potential is minimized by scalar field configurations φn obeying

φ†n φn =
n (n+ 1) (k − n+ 1)

4g2R2
1pn−1

and φn φ
†
n =

n (n+ 1) (k − n+ 1)

4g2 R2
1pn .

(3.45)
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In the special case where p0 = p1 = · · · = pk = r, so that the gauge symmetry reduction

is given by

SU(p) −→ U(1)k × SU(r)k+1 with p =
1

2
r (k + 1) (k + 2) , (3.46)

an explicit solution of (3.45) is given by φn = φ0
n, where

φ0
n =

1

2g R

√
n (n+ 1) (k − n+ 1) Un (3.47)

for n = 1, . . . , k. The independent unitary degrees of freedom Un ∈ U(r) can be removed

using a U(1)k×SU(r)k gauge transformation, and this solution breaks the gauge symmetry

to SU(r). There are k r2 massive gauge bosons, and k r2 physical Higgs fields represented

by r×r hermitean matrices hn, n = 1, . . . , k with φn = φ0
n+hn. The Higgs and vector boson

masses, both proportional to 1
R , can be worked out by substitution into the action (3.43).

A completely analogous analysis follows in the cases with k = 0, though there will be

quantitative differences. While the physics of the dynamical symmetry breaking for these

systems is qualitatively analogous to the cases studied in [10], the quantitative features

are significantly different due to the different forms of the interactions in (3.42) and of the

Higgs potential in (3.44). These differences are due to the fact that while only monopole

backgrounds on CP 1 contribute to the equivariant dimensional reduction considered in [10],

here both instanton and monopole charges on CP 2 affect the quiver gauge theory.

The quantitative differences from the CP 1 models are somewhat more drastic in the

fermionic sector, due to the large asymmetry between the positive and negative chirality

spinor harmonics on CP 2 in the limit l = 0. With the spinc twist (3.33), the index (2.55)

in this limit becomes

νn := νn,3n−2k =
1

2
(n+ 1) (n − 2) (2n − 1) (3.48)

for n = 0, 1, . . . , k. Thus there is only a single antichiral mode ψ̃ := ψ̃1,3−2k;0, whose chiral

partner is ψ := ψ0,−2k;0. The remaining fermion fields ψn;ℓ := ψn,3n−2k;ℓ on M for n > 2 are

all induced from positive chirality spinor harmonics on CP 2, transform in the fundamental

representation of SU(pn), and have gauge interactions given by

D/ψn;ℓ =

(
∂/M − 1

2
κ/ +

g√
n+ 1

An/

)
ψn;ℓ (3.49)

for each ℓ = 1, . . . , νn. The fermionic action (3.39) thereby truncates to

Sk,0
D =

∫

M
ddx
√

|G|
[
ψ†D/ψ+ψ̃†D/ ψ̃+2

√
kg
(
ψ†φ†1γψ̃+ψ̃†φ1γψ

)
+

k∑

n=3

νn∑

ℓ=1

ψ†
n;ℓD/ψn;ℓ

]
,

(3.50)

and the fermion mass induced by the Higgs vacuum (3.47) and the Yukawa interaction

in (3.50) is

µk,0 =

√
2 k

R
. (3.51)
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Figure 3. Quiver diagram for the fundamental representation of SU(3).

In contrast to the Dirac-Higgs chains which arise from dimensional reduction over CP 1 [10],

Yukawa interactions here exist for all values of k > 0. On the other hand, there are no

Yukawa interactions in (3.39) in the limit k = 0.

Furthermore, the construction of massive eigenspinors discussed in section 3.2 proceeds

by substituting m̃ = 3(n − 1) for n = 0, 1, . . . , k in (3.24) and involves 4(n + 1) families

of states in multi-dimensional irreducible representations of the SU(2) isospin group. This

contrasts markedly with the situation for spinors on CP 1 where all irreducible represen-

tations of the U(1) holonomy group are one-dimensional and spinors are two-component

fields, so only two families of eigenvalues ever arise from a single irreducible representation

of the U(1) gauge group on CP 1. These two families actually correspond to a single family

with equally paired positive and negative eigenvalues.

4 Dynamical symmetry breaking from the fundamental representation

In this section we will work out the details of dynamical symmetry breaking in the quiver

gauge theory which is induced by dimensional reduction from the three-dimensional fun-

damental representation C1,0 of SU(3). It is obtained by setting k = 1 in the class of

models studied in section 3.3. The analysis in this case is completely analogous to that of

the fundamental SU(2) representations in the CP 1 models of [10]. We will determine the

physical particle spectrum and masses in several explicit instances, including symmetry

hierarchies which entail dynamical electroweak symmetry breaking.

4.1 Spontaneous symmetry breaking

For k = 1, l = 0 there are two weights in W1,0, with (n,m) = (1, 1) and (n,m) = (0,−2),

and a single Higgs field φ := φ1 = φ+
0,−2 which is a p1 × p0 complex matrix. The quiver

lattice is simply a chain consisting of one link. It is depicted in figure 3.

Suppose that p1 ≥ p0. Then, with a suitable gauge choice, the Higgs minimum can be

put in the form

φ0 =
1√

2 g R

(
0(p1−p0)×p0

1p0

)
, (4.1)

where 0(p1−p0)×p0
is a (p1 − p0) × p0 matrix of zeroes. The gauge symmetry breaking

sequence is given by

SU(p) −→ SU(p0)×SU(p1)×U(1) −→ SU(p1−p0)×SU(p0)diag×U(1)′ with p = p0+2p1 ,

(4.2)

where the last step is dynamical symmetry breaking with SU(p0)diag the diagonal SU(p0)

subgroup leaving 1p0
invariant, and U(1)′ acts from the left on the top p1 − p0 rows of φ0.

The case p0 > p1 can be treated similarly.
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The gauge boson masses can be determined from the bicovariant derivative in (3.42),

which in this case reads

Dφ = dφ+ g

(
1√
2
A1 φ− φA0

)
. (4.3)

For the moment we shall take the gauge potential A0 to lie in u(p0) and A1 in u(p1), as an

overall u(1) part will drop out. Let

A1 = Aa
L

(
iλa

2

)
+BL

i√
2p1

1p1
and A0 = Aã

R

(
iλã

2

)
+BR

i√
2p0

1p0
, (4.4)

where λa are Gell-Mann matrices for SU(p0) with trp0×p0
(λa λb) = 2δab, λã are Gell-Mann

matrices for SU(p1), and the square root factors are chosen so that the U(1) generators

have the same normalisation as the Gell-Mann matrices. Then only the combination

B :=
1√
p

(√
p0 BL −

√
2p1BR

)
(4.5)

appears in (4.3), since the orthogonal combination 1√
p

(√
2p1BL +

√
p0 BR

)
decouples as

it should. With this notation, the bicovariant derivative (4.3) now reads

Dφ = dφ+
i g

2

(
1√
2
Aa

L λa φ−Aã
R φλã +

√
p

p1 p0
B φ

)
, (4.6)

from which we can obtain the gauge boson mass matrix M by substituting the vacuum

expectation value (4.1) of the Higgs field to get

1

2
,A⊤ M 2 A = trp0×p0

((
Dφ0

)†
Dφ0

)
(4.7)

where A is a column vector consisting of the vector bosons in (4.6). We will now work

through some explicit examples.

p0 = p1 = r. In this case one has

φ0 =
1√

2 g R
1r (4.8)

and λa = λã. The symmetry breaking pattern is

SU(3r) −→ SU(r) × SU(r)diag × U(1)′ −→ SU(r)diag , (4.9)

and only SU(r)diag survives as a gauge symmetry. The quadratic form (4.7) is given by

trr×r

((
Dφ0

)†
Dφ0

)
=

1

8R2

[
2δab

(
1√
2
Aa

L −Aa
R

) (
1√
2
Ab

L −Ab
R

)
+

3

r
B2

]
. (4.10)

The gauge boson mass matrix is thus given by

M2 =
1

2R2




1
2 1r − 1√

2
1r 0

− 1√
2

1r 1r 0

0 0 3
2r


 . (4.11)

– 25 –



J
H
E
P
0
8
(
2
0
0
9
)
0
3
8

Diagonalising (4.11) produces massive gauge bosons B together with

W a :=

√
1

3
Aa

L −
√

2

3
Aa

R (4.12)

with mass squared

µ2
B =

3

4r R2
and µ2

W =
3

4R2
, (4.13)

while the massless combinations corresponding to the unbroken symmetry group

SU(r)diag are

Aa :=

√
2

3
Aa

L +

√
1

3
Aa

R . (4.14)

The physical Higgs fields can be incorporated into an r × r hermitean matrix h with

φ =
1√

2 g R
1r + h , (4.15)

and the Higgs boson mass read off from the term in the Higgs potential (3.44) quadratic

in h to get

µ2
h =

6

R2
. (4.16)

p0 = 1 , p1 = 2. This example exhibits U(1) mixing. One has p = 5 and the pattern

SU(5) −→ SU(2) × U(1) −→ U(1)′ . (4.17)

In this case the Higgs field φ is a two-component column vector with vacuum

expectation value

φ0 =
1√

2 g R

(
0

1

)
. (4.18)

The Higgs boson mass is again given by (4.16), but now the gauge boson mass matrix

obtained from (4.6) and (4.7) mixes A3
L and B as

M2 =
1

8R2




1 0 0 0

0 1 0 0

0 0 1 −
√

5

0 0 −
√

5 5


 . (4.19)

This gives two W -bosons with mass squared

µ2
W =

1

8R2
, (4.20)

a Z-boson

Z =
1√
6

(
A3

L −
√

5 B
)

with µ2
Z =

3

4R2
, (4.21)

and a massless photon

A =
1√
6

(√
5 A3

L +B
)
. (4.22)

The Weinberg angle θ in this model is given by

sin2 θ =
5

6
. (4.23)
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p0 = 2 , p1 = 1. Here p = 4 and the symmetry breaking sequence (4.17) is modified to

SU(4) −→ SU(2) × U(1) −→ U(1)′ . (4.24)

In this case one computes

µ2
W =

1

4R2
, µ2

Z =
3

4R2
and sin2 θ =

2

3
. (4.25)

This example illustrates that, in contrast to the CP 1 case, the results depend on the

ordering of the quiver gauge group ranks pn.

4.2 Fermion spectrum and Yukawa couplings

Following the general analysis of sections 3.2 and 3.3, there are two fermion zero modes

ψ0,−2 and ψ̃1,1 on M determined by the twisting parameter c̃ = −1
2 , for which the index

is given by

ν1,1 = −1 and ν0,−2 = +1 . (4.26)

The positive chirality mode on CP 2 is

χ+
0,−2 = |Ω〉 ⊗

∣∣00 , −2
〉

(4.27)

while the negative chirality mode, which is a doublet of the SU(2) gauge theory on CP 2, is

χ−
1,1 =

1√
2

(
σ1̄|Ω〉 ⊗

∣∣11 , 1
〉

+ σ2̄|Ω〉 ⊗
∣∣ 1
−1 , 1

〉)
. (4.28)

For example, taking p0 = p1 = r, we can choose the corresponding d-dimensional spinor

fields ψ̃1,1 and ψ0,−2 to transform in the fundamental representation of SU(r)×SU(r). After

the rescalings (3.7) and (3.38), the Yukawa couplings in (3.39) for this case take the form

2g

∫

CP 2

βvol Ψ†




0 0 φγ ⊗ σ1̄

0 0 φγ ⊗ σ2̄

φ† γ ⊗ σ1 φ† γ ⊗ σ2 0


Ψ = 2g

(
ψ̃ †

1,1 φγ ψ0,−2 + ψ†
0,−2 φ

† γ ψ̃1,1

)

(4.29)

where we have used (2.58). Expanding about the Higgs vacuum (4.8), we find a mass term

for the d-dimensional fermions given by

√
2

R

(
ψ†

1,1 ψ0,−2 + ψ†
0,−2 ψ1,1

)
, (4.30)

where ψ1,1 = γ ψ̃1,1. This agrees with (3.51) for k = 1.

In addition to the zero modes there is an infinite tower of massive modes. The full

spectrum of the Dirac operator on CP 2 can be derived using the results of section 3.2.

For this, we require the irreducible SU(2)×U(1) representations that appear in the tensor

product of the gauge group representations (1, 1) and (0,−2) on CP 2 with the spinor

representation (3.22), which was shown in section 3.2 to decompose as [ (1, 0) ] ⊕ [ (0, 3) ⊕
(0,−3) ]. Twisting with c = −1 from (3.33), to give globally well-defined bundles, alters
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the gauge group representations as (1, 1) → (1, 0) and (0,−2) → (0,−3). Thus we require

the eigenvalues, and their multiplicities, of the Dirac operator for the representations

(1, 0) ⊗
([

(1, 0)
]
⊕
[
(0, 3) ⊕ (0,−3)

])
=
[
(2, 0) ⊕ (0, 0)

]
⊕
[
(1, 3) ⊕ (1,−3)

]
(4.31)

and

(0,−3) ⊗
([

(1, 0)
]
⊕
[
(0, 3) ⊕ (0,−3)

])
=
[
(1,−3)

]
⊕
[
(0, 0) ⊕ (0,−6)

]
. (4.32)

The eigenvalues and their multiplicities follow from the general formulas (3.25)

and (3.26) of section 3.2. The eight states on the right-hand side of (4.31), a triplet,

two doublets and a singlet of SU(2), give rise to eight infinite sequences of Dirac eigen-

spinors. All eigenvalues occur in equal pairs with opposite sign so there are four infinite

sequences with positive eigenvalues, together with their negative eigenvalue partners. The

four states on the right-hand side of (4.32), a doublet and two singlets of SU(2), give rise

to four infinite sequences of Dirac eigenspinors with eigenvalues in equal pairs and opposite

signs yielding two infinite sequences with positive eigenvalues, together with their negative

eigenvalue partners. Denoting the positive eigenvalues by λN
R , with degeneracies dN , the

two infinite sequences arising from (4.32) are given by

λN =
√

(N + 1) (N + 3) , dN = (N + 2)3 ,

λN =
√

(N + 2) (N + 3) , dN =
1

2
(N + 1) (N + 4) (2N + 5) (4.33)

with N = 0, 1, . . .. The spectrum arising from (4.31) gives two copies of (4.33), so the

full spectrum consists of three copies of (4.33) together with their negative eigenvalue

counterparts. The two zero modes can be thought of as coming from two copies of the first

sequence in (4.33) with N = −1.

It can be interesting to also consider alternative values of the twisting parameter c,

other than the choice c = −1 which induces Yukawa couplings in the zero mode sector of

the fermionic field theory on M . In the present context c = 3 gives three positive chirality

zero modes, ν1,1 = 3 while ν0,−2 = 0, and c = −3 gives three negative chirality zero

modes, ν1,1 = 0 while ν0,−2 = −3. These zero modes could manifest themselves as three

generations of fermions in the dimensionally reduced field theory.

5 Dynamical symmetry breaking from the adjoint representation

In this section we examine symmetry breaking from the eight-dimensional adjoint repre-

sentation C1,1 of SU(3). This is the lowest representation which is qualitatively distinct

from the CP 1 examples, in the sense that it involves a full two-dimensional quiver lattice in

figure 1 of equivariant gauge fields. Again we will determine the physical particle spectrum

and masses in some explicit instances.
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φ−

1,−3

φ+
1,−3

φ0,0
+

φ2,0
−

(1,3)(0,0)

(2,0)(1,−3)

Figure 4. Quiver diagram for the adjoint representation of SU(3).

5.1 Spontaneous symmetry breaking

In the case k = l = 1, the weight set is W1,1 =
{
(1, 3) , (1,−3) , (2, 0) , (0, 0)

}
. The only

non-zero coefficients Λ±
1,1(n,m) in (2.40) are

Λ+
1,1(1,−3) = 1 , Λ+

1,1(0, 0) =

√
3

2
, Λ−

1,1(1,−3) =
√

3 and Λ−
1,1(2, 0) =

√
3

2
. (5.1)

Hence the only four matrix one-forms in (2.44) are

β±1,−3 , β+
0,0 and β−2,0 , (5.2)

and there are only four Higgs fields

φ±1,−3 , φ+
0,0 and φ−2,0 . (5.3)

The apparent asymmetry here, in that the weight (1, 3) does not appear while (1,−3) does,

is an artifact of the notation. The symmetry between the representations is clear in the

quiver lattice of figure 4 that indicates which SU(2)×U(1) representations are mapped by

the Higgs field morphisms.

For illustrative purposes, we will again restrict to the case of equal quiver gauge group

ranks given by p1,−3 = p1,3 = p0,0 = p2,0 = r with p = 8r, which gives the gauge symmetry

reduction pattern SU(8r) → SU(r)4 ×U(1)3. In this case each Higgs field φ±n,m is a square

r × r matrix and the Higgs potential in (3.5), after the rescalings (3.7), is

V
(
φ+,φ−) = g2 trr×r

[
3

(
3

4g2R2
1r−

(
φ+

0,0

)†
φ+

0,0

)2

+
5

3

(
3

4g2R2
1r−

(
φ+

1,−3

)†
φ+

1,−3

)2

+3

(
3

4g2R2
1r−

(
φ−1,−3

)†
φ−1,−3

)2

+
5

3

(
3

4g2R2
1r−

(
φ−2,0

)†
φ−2,0

)2

+

∣∣∣∣φ
+
1,−3

(
φ−1,−3

)†
−
(
φ−2,0

)†
φ+

0,0

∣∣∣∣
2

+
∣∣∣φ+

0,0φ
−
1,−3−φ−2,0φ

+
1,−3

∣∣∣
2
]
. (5.4)

The global minimum of (5.4) is attained by setting all four Higgs fields proportional to

U(r) matrices

φ±n,m
0 =

√
3

2g R
U±

n,m , (5.5)
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which is a special instance of (3.12), together with the constraint

U−
2,0 U

+
1,−3 = U+

0,0 U
−
1,−3 . (5.6)

There are therefore only three independent unitary matrices U±
n,m, and we can use a U(r)3

gauge transformation to set any three of them equal to 1r. The constraint (5.6) then

requires all four to be the identity and only the diagonal subgroup SU(r)diag survives. The

gauge symmetry is thus broken dynamically as

SU(8r) −→ SU(r)4 × U(1)3 −→ SU(r)diag , (5.7)

with all four Higgs fields transforming in the same way under the surviving diagonal sub-

group as φ±n,m → g φ±n,m g† where g ∈ SU(r)diag. Of the initial (4r2 − 1) gauge bosons, 3r2

become massive and of the original 8r2 degrees of freedom in the four complex Higgs fields,

5r2 survive as physical Higgs fields.

We can parameterise the physical Higgs fields by choosing a gauge in which three are

given by hermitean matrices and one by a general complex matrix, yielding 5r2 degrees

of freedom as required. To see that such a gauge exists, we first observe that any square

complex matrix has a unique polar decomposition into the product of a unitary matrix

with a hermitean matrix so that, without making any gauge choice, we can always write

φ±n,m = V ±
n,m

( √
3

2g R
1r + h±n,m

)
(5.8)

with V ±
n,m unitary and h±n,m hermitean. In this parameterisation the vacuum state (5.5)

corresponds to h±n,m = 0 and V ±
n,m = U±

n,m satisfying (5.6). By using an SU(r)4 × U(1)3

gauge transformation we can set any three of the U(r)-valued fields V ±
n,m to the identity,

but not all four. Let us choose a gauge in which V ±
1,−3 = V −

2,0 = 1r. In this gauge, the

Higgs fields

φ±1,−3 =

√
3

2g R
1r + h±1,−3 and φ−2,0 =

√
3

2g R
1r + h−2,0 (5.9)

are hermitean while

φ+
0,0 = V +

0,0

( √
3

2g R
1r + h+

0,0

)
(5.10)

is a general complex matrix. Although V +
0,0 is an arbitrary unitary field in general, the vac-

uum condition (5.6) in this gauge requires U+
0,0 = 1r so let us paramaterise φ+

0,0 differently.

Instead of (5.10), it will be more convenient to use the decomposition

φ+
0,0 =

√
3

2g R
1r +H+

0,0 + i H̃+
0,0 (5.11)

with H+
0,0 and H̃+

0,0 hermitean. In this gauge the 5r2 physical degrees of freedom in the

Higgs fields are represented by the five hermitean matrices h±1,−3, h
−
2,0, H

+
0,0 and H̃+

0,0, and
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the remaining SU(r)diag gauge degree of freedom is implemented by
(
h±n,m,H

+
0,0, H̃

+
0,0

)
→

g
(
h±n,m,H

+
0,0, H̃

+
0,0

)
g† with g ∈ SU(r)diag.

The Higgs boson masses can be found by extracting the quadratic part of the poten-

tial (5.4) when expanded around the minimum. The mass matrix Mh works out to be

given by

M 2
h =

1

2R2




3 0 0 0 0

0 21 −3 0 0

0 −3 13 0 0

0 0 0 21 −3

0 0 0 −3 13




⊗ 1r , (5.12)

where the rows and columns are labelled by the sequence of Higgs fields{
H̃+

0,0,H
+
0,0, h

+
1,−3, h

−
1,−3, h

−
2,0

}
. There are two doubly degenerate eigenvalues

µ2
h± =

11

R2
(5.13)

corresponding to the linear combinations

h+ =
1√
10

(
h+

1,−3 − 3H+
0,0

)
and h− =

1√
10

(
h−2,0 − 3h−1,−3

)
, (5.14)

and

µ2
h′± =

6

R2
(5.15)

associated with the orthogonal combinations

h′+ =
1√
10

(
3h+

1,−3 +H+
0,0

)
and h′ − =

1√
10

(
3h−2,0 + h−1,−3

)
. (5.16)

The lightest Higgs field is H̃+
0,0 with

µ2
eH+

0,0

=
3

2R2
. (5.17)

The gauge boson masses are determined from the bicovariant derivative terms in (3.5),

after the rescalings (3.7) and setting φ±n,m equal to their vacuum expectation values. Again

writing the gauge potentials An,m = i
2 A

a
n,m λa + i

2 A
0
n,m

√
2/r 1r in terms of Gell-Mann

matrices λa for SU(r) and the identity matrix, using (2.48) one finds

Dφ±n,m = dφ±n,m +
i g

2

(
Aa

n±1,m+3√
n+ 1 ± 1

λa φ
±
n,m −

Aa
n,m√
n+ 1

φ±n,m λa

+

√
2

r

(
A0

n±1,m+3√
n+ 1 ± 1

−
A0

n,m√
n+ 1

)
φ±n,m

)
. (5.18)

By defining the normalised U(1) fields

B±
n,m :=

1√
2n + 2 ± 1

(√
n+ 1 A0

n±1,m+3 −
√
n+ 1 ± 1 A0

n,m

)
, (5.19)
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we can rewrite (5.18) as

Dφ±n,m = dφ±n,m +
i g

2

(
Aa

n±1,m+3√
n+ 1 ± 1

λa φ
±
n,m −

Aa
n,m√
n+ 1

φ±n,m λa

+

√
2(2n + 2 ± 1)

r (n+ 1 ± 1) (n + 1)
B±

n,m φ±n,m

)
. (5.20)

Not all four fields (5.19) are independent of course, as there are only three U(1) degrees of

freedom, and indeed one has

B−
1,−3 = −B+

0,0 . (5.21)

Now using (5.5) gives the quadratic form

1
2 A⊤ M2 A = trr×r

((
Dφ+

1,−3
0
)†

Dφ+
1,−3

0 +
(
Dφ+

0,0
0
)†

Dφ+
0,0

0

+
(
Dφ−1,−3

0
)†

Dφ−1,−3
0 +

(
Dφ−2,0

0
)†

Dφ−2,0
0

)
(5.22)

with the gauge boson mass matrix given by

M2 =
3

4R2




1r 0r −
√

1
2 1r −

√
1
6 1r 0 0 0

0r 1r −
√

1
2 1r −

√
1
6 1r 0 0 0

−
√

1
2 1r −

√
1
2 1r 2 1r 0r 0 0 0

−
√

1
6 1r −

√
1
6 1r 0r

2
3 1r 0 0 0

0 0 0 0 3 0 0

0 0 0 0 0 5
6 0

0 0 0 0 0 0 5
6




, (5.23)

where the rows and columns of the mass matrix are ordered according to the sequence of

gauge potentials
{
A1,3, A1,−3, A0,0, A2,0, B−

1,−3, B
+
1,−3, B

−
2,0

}
. The eigenvalues of the upper

left 4 × 4 block matrix are

0 ,
2

R2
and

3

4R2
(twice) . (5.24)

The linear combination

Aa :=
1

2

(
A1,3

a +A1,−3
a +

√
1

2
A0,0

a +

√
3

2
A2,0

a

)
(5.25)

is massless, while the gauge boson

1

2

√
1

10

(
−
√

6
(
A1,3

a +A1,−3
a

)
+ 3

√
3 A0,0

a +A2,0
a

)
(5.26)

has mass squared
2

R2
. The two linear combinations with mass squared

3

4R2
are

√
1

2

(
A1,3

a −A1,−3
a

)
and

√
1

10

(
A1,3

a +A1,−3
a +

√
2 A0,0

a −
√

6 A2,0
a

)
. (5.27)
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In addition, the three U(1) gauge bosons acquire masses given by

µ2
B−

1,−3

=
9

4R2
and µ2

B+

1,−3

= µ2
B−

2,0
=

5

8R2
. (5.28)

It seems remarkable that the mass squared for all Higgs bosons and gauge bosons evaluate

to rational multiples of 1
R2 .

5.2 Fermion spectrum and Yukawa couplings

Following the analysis of section 3.2, with twisting parameter c = −3 there is a positive

chirality zero mode associated with the SU(2) singlet

χ+
0,0 = |Ω〉 ⊗

∣∣00 , 0
〉
, (5.29)

and a negative chirality mode associated with one of the SU(2) doublets

χ−
1,3 =

1√
2

(
σ1̄|Ω〉 ⊗

∣∣11 , 3
〉

+ σ2̄|Ω〉 ⊗
∣∣ 1
−1 , 3

〉)
. (5.30)

If a (d + 4)-dimensional spinor field Ψ transforms in the fundamental representation of

SU(8r), then the d-dimensional spinors ψ0,0 and ψ1,3 = γψ̃1,3, associated with χ+
0,0 and

χ−
1,3 respectively, transform under fundamental representations of the different SU(r) gauge

groups with connections A0,0 and A1,3. When the quiver gauge symmetry is broken, they

both transform under the fundamental representation of the remaining unbroken SU(r)diag

combination, with respective charges g

2
√

2
and g

2 according to (5.25). From (3.40) it follows

that the Yukawa couplings give masses µ1,1 to these fermions with

µ2
1,1 =

9

2R2
. (5.31)

By (2.55), the index associated with the weight (n,m) = (2, 0) is zero, but the index

for (n,m) = (1,−3) is ν1,−3 = 8. Thus unlike the fundamental representation breaking, the

adjoint representation breaking models contain massless chiral fermions. We can expect

the same to be true for all representations Ck,l with k + l > 1 when l > 0, and with k > 2

when l = 0 (see (3.50)).

Again there is an infinite tower of massive Dirac eigenspinors. Twisting with c = −3

alters the weights in W1,1 as

(1, 3) −→ (1, 0), (1,−3) −→ (1,−6), (2, 0) −→ (2,−3) and (0, 0) −→ (0,−3) (5.32)

and the corresponding H-modules are then tensored with the spinor representa-

tion, as in (3.24), to yield 12 irreducible holonomy group representations given

by the decompositions

(1, 0) ⊗
([

(1, 0)
]
⊕
[
(0, 3) ⊕ (0,−3)

])
=
[
(2, 0) ⊕ (0, 0)

]
⊕
[
(1, 3) ⊕ (1,−3)

]
,

(1,−6) ⊗
([

(1, 0)
]
⊕
[
(0, 3) ⊕ (0,−3)

])
=
[
(2,−6) ⊕ (0,−6)

]
⊕
[
(1,−3) ⊕ (1,−9)

]
,

(2,−3) ⊗
([

(1, 0)
]
⊕
[
(0, 3) ⊕ (0,−3)

])
=
[
(3,−3) ⊕ (1,−3)

]
⊕
[
(2, 0) ⊕ (2,−6)

]
,

(0,−3) ⊗
([

(1, 0)
]
⊕
[
(0, 3) ⊕ (0,−3)

])
=
[
(1,−3)

]
⊕
[
(0, 0) ⊕ (0,−6)

]
. (5.33)
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Since the total number of states in C1,1 is eight and the spinor representation (3.22) is

four-dimensional, there are 32 infinite sequences corresponding to the 32 states on the

right-hand side of (5.33). These consist of 16 sequences of positive eigenvalues and their

negative eigenvalue partners. The 16 infinite sequences of positive eigenvalues λN
R , together

with their degeneracies dN , arising from the representations on the right-hand side of (5.33)

can be calculated as before using (3.25) and (3.26). They are given by

λN =
√

(N + 1) (N + 3) − 2 , dN = (N + 2)3 ,

λN =
√

(N + 1) (N + 3) , dN = (N + 2)3 (×3) ,

λN =
√

(N + 2) (N + 3) − 3 , dN =
1

2
(N + 1) (N + 4)(2N + 5) ,

λN =
√

(N + 2) (N + 3) − 2 , dN =
1

2
(N + 1) (N + 4) (2N + 5) (×2) ,

λN =
√

(N + 2) (N + 3) , dN =
1

2
(N + 1) (N + 4) (2N + 5) (×3) (5.34)

and

λN =
√

(N + 1) (N + 5) , dN = (N + 3)3 ,

λN =
√

(N + 1) (N + 5) + 1 , dN = (N + 3)3 ,

λN =
√

(N + 2) (N + 5) − 1 , dN =
1

2
(N + 2) (N + 5) (2N + 7) ,

λN =
√

(N + 2) (N + 5) , dN =
1

2
(N + 2) (N + 5) (2N + 7) ,

λN =
√

(N + 4)2 − 1 , dN = (N + 1) (N + 4) (N + 7) ,

λN = N + 4 , dN = (N + 1) (N + 4) (N + 7) (5.35)

with N a non-negative integer. The two singlet zero modes are given by setting N = −1

in two of the three sequences in the second line of (5.34), while the octet of zero modes is

gotten by taking N = −1 in the first sequence of (5.35).

6 Conclusions

We have examined in some detail the SU(3)-equivariant dimensional reduction of pure

massless Yang-Mills-Dirac theory over the coset space CP 2, including a systematic incor-

poration of monopole and instanton backgrounds on CP 2. The topologically non-trivial

internal fluxes induce a Higgs potential as well as Yukawa couplings between the reduced

fermion fields and the Higgs fields, with the standard form of dynamical symmetry break-

ing. For the class of models in which all Higgs fields are square matrices of the same

dimension r, the minima of the Higgs potential have a geometrical interpretation in terms

of gauge fields on the corresponding quiver lattice. As a U(r) lattice gauge theory config-

uration, the non-abelian flux on the quiver lattice must vanish for the Higgs vacuum to

be realised. Explicit examples have been presented with symmetry breaking hierarchies

generated from both the fundamental and adjoint representations of SU(3).
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For the fundamental representation models, the symmetry hierarchies

SU(3r) −→ SU(r) × SU(r) × U(1) −→ SU(r) ,

SU(5) −→ SU(2) × U(1) −→ U(1) , (6.1)

SU(4) −→ SU(2) × U(1) −→ U(1)

have been analysed in detail, where the first symmetry breaking is explicit, dictated by

the equivariant dimensional reduction ansatz, and the second one is dynamical. Gauge

boson and Higgs masses have been calculated in all three cases, and all are inversely pro-

portional the length scale set by the metric on CP 2. The complete fermion spectrum has

been presented, including both chiral zero modes of the Dirac operator and massive Dirac

eigenmodes. There are two zero modes, one of positive chirality χ+
0,−2 and one of negative

chirality χ−
1,1, which acquire masses via their Yukawa couplings (4.30), with left and right

chiralities of a single massive fermion carrying different SU(2) × U(1) quantum numbers.

This is analogous to the way that leptons and quarks acquire masses in the standard model,

with the left-handed and right-handed electrons carrying different quantum numbers. The

induced zero mode masses are of the same order as the mass scale of the infinite fermionic

tower arising from the non-zero eigenvalues (4.33). The infinite tower may be truncated

to finitely many degrees of freedom by replacing the coset space CP 2 with a fuzzy pro-

jective plane CP 2
F . However, while fuzzy versions of the line bundle zero modes χ+

0,−2

are known [17], there is as yet no explicit fuzzy construction of zero modes on instanton

bundles, though one certainly exists. Models with realistic numbers of fermion generations

can be obtained by changing the spinc twisting parameter of section 3.2.

For the adjoint representation models, we examined the symmetry breaking hierarchy

SU(8r) −→ SU(r)4 × U(1)3 −→ SU(r) (6.2)

in detail, calculating the gauge boson and physical Higgs masses explicitly. Again chiral

zero modes χ+
0,0 and χ−

1,3 of the Dirac operator exist for which masses are generated by the

Yukawa couplings. In this case, however, there is also an octet of positive chirality zero

modes which remains exactly massless.

The infinite tower of massive fermions obtained here is much more complicated than

that in the case of reductions over CP 1, primarily because each state of a pertinent irre-

ducible representation of the isospin subgroup of the holonomy group of CP 2 generates an

infinite tower of its own. For the U(1) holonomy group of CP 1 all irreducible represen-

tations are one-dimensional and there is only a single infinite tower for each irreducible

representation, while for CP 2 any given irreducible representation of SU(2) produces a

family of infinite towers with the number of members growing as the dimension of the

representation. Again these towers could be truncated by restricting to a finite number of

degrees of freedom using a fuzzy regularisation on CP 2
F .

Many of the qualititative features we have unveiled regarding the vacuum structure of

field theories obtained via equivariant dimensional reduction can be expected to hold over

generic homogeneous internal spaces G/H. The general structure of the induced quiver

gauge theories is described in [7, 8]. The quiver diagram can be regarded as a lattice of
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dimension given by the rank of the holonomy group H of the coset, and it comes with

relations which equate the various distinct paths between any pair of vertices of the pla-

quettes of the quiver lattice. These relations will arise dynamically as conditions for the

Higgs vacua. Thus, for instance, our lattice gauge theoretic interpretation of the Higgs

minima in terms of flat connections will be a generic feature of any coset space G/H for

which rank(H) ≥ 2. With this in mind, it would be interesting to extend our techniques

to the equivariant dimensional reductions of ten-dimensional N = 1 supersymmetric E8

gauge theories over six-dimensional coset spaces [5, 21] and of superstring theories on

nearly Kähler backgrounds [22]. The most interesting class of such reductions involve non-

symmetric (and nearly Kähler) six-dimensional coset spaces, with the vacua controlled by

sets of torsion fluxes. Presumably these internal fluxes could be systematically incorpo-

rated, along with other topologically non-trivial background fields of the coset space, in a

manner analogous to the treatment of this paper. More generally, it would be interesting

to find internal coset spaces for which the equivariant dimensional reduction leads to a

physical particle spectrum which is in more precise quantitative agreement with that of

the standard model.
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A Bundles on CP 2

Consider the vector bundle Q over CP 2 of rank two which is inverse to the line bundle L−1

with first Chern number −1, in the K-theoretic sense

Q⊕ L−1 = I3 (A.1)

where I3 is the trivial bundle of rank three over CP 2. The bundle Q is called a quotient

bundle [20], and it has structure group U(2). Canonical connections on L and Q were given

in (2.25) and (2.30), respectively, and indeed the construction of the flat connection A0 in

section 2.3 was based on the decomposition (A.1), see [12].

The Chern character of any bundle V → CP 2 of rank r can be expanded as [20]

ch(V) = r + c1(V) +

(
1

2
c1(V) ∧ c1(V) − c2(V)

)
, (A.2)

where c1(V) and c2(V) are the first and second Chern characteristic classes of V with the

integer C2(V) =
∫

CP 2 c2(V) the second Chern number. The rank two bundle Q carries

U(1) (magnetic monopole) charge. Under the embedding SU(2) × U(1) →֒ SU(3), the

fundamental representation of SU(3) decomposes as in (2.6). This is the representation

content of (A.1). The line bundle L−1 has first Chern number −1 and its fibres transform
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as the H-module (n,m) = (0,−2). The U(1) quantum number m is thus twice the Chern

number of the associated line bundle and we shall call m
2 the monopole charge. The fibres

of the quotient bundle Q transform as the H-module (n,m) = (1, 1). This implies that

Q has monopole charge 1
2 but first Chern number +1, since it is of rank two and the first

Chern number involves a trace, so it is equal to twice the monopole charge.

Chern characters are additive under Whitney sums of bundles, so since Q ⊕ L−1 is

trivial we have

ch(Q⊕ L−1) = ch(Q) + ch(L−1) = 3 (A.3)

giving ch(Q) = 3 − ch(L−1). The Chern character is also multiplicative with respect to

tensor products of bundles, so using (A.3) we have

ch
(
Q⊗ Leb

)
= ch(Q) ∧ ch

(
Leb

)
= 3ch

(
Leb

)
− ch

(
Leb−1

)
(A.4)

for any power b̃. In particular, for b̃ = −1
2 we get the instanton bundle I = Q⊗L−1/2 with

ch(I) = 3 ch
(
L−1/2

)
− ch

(
L−3/2

)
. (A.5)

The Chern character of the monopole line bundle L is ch(L) = exp ξ, where ξ = i
2π fu(1)

with
∫

CP 2 ξ ∧ ξ = 1, so

ch(L) = 1 + ξ + 1
2 ξ ∧ ξ and

∫

CP 2

ch(L) =
1

2
. (A.6)

Similarly, one has

ch(I) = 3

(
1− 1

2
ξ+

1

8
ξ ∧ ξ

)
−
(

1− 3

2
ξ+

9

8
ξ ∧ ξ

)
= 2− 3

4
ξ∧ξ and

∫

CP 2

ch(I) = −3

4
, (A.7)

and hence the second Chern number of I is 3
4 , implying that I does not exist globally [14].

Nevertheless, it plays a crucial role in the index theorem described in appendix C.

We now have enough information to calculate the Chern characteristic classes of the

rank n + 1 instanton bundle In. The relevant component of ch(I) for evaluating the

integral over CP 2 involves the square of the curvature two-form, so an explicit evaluation

requires taking the trace of the second order Casimir operator in the two-dimensional vector

representation of SU(2). The Casimir operator is C2(2) = 3
4 12, and taking the trace gives

a factor of 2, so ∫

CP 2

ch(I) = −1

2
C2(2)Tr(12) . (A.8)

The bundle

In := Sym⊗n(I) (A.9)

is the rank (n + 1) bundle given by the n-th symmetric tensor product of I. As such, its

second Chern number differs from (A.8) in two ways. Firstly, the dimension of the fibre is

Tr(1n+1) and, secondly, the second order Casimir operator is C2(n+1) = n
2

(
n
2 + 1

)
1n+1.

From this we deduce that the second Chern number of In is

C2(In) = −
∫

CP 2

ch(In) =
1

2

n (n+ 2)

4
(n+ 1) =

1

2
I (I + 1) (2I + 1) . (A.10)
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For spinor representations (n = 2I with I ∈ Z + 1
2) this is always fractional, while for

vector representations (n = 2I with I ∈ Z) it is an integer corresponding to the dimension

of the irreducible SU(3)-representation CI,I−1.

B Matrix one-form products on CP 2

We record here the explicit matrix products which are used for calculations in the quiver

gauge theory of section 3. Using (2.44) the matrix one-form products appearing in (2.47)

are given by

β̄±n,m
† ∧ β̄±n,m =

Λ±
k,l(n,m)2

2(n + 1)
Ξ±

+(n,m; β̄ ) , (B.1)

β̄±n∓1,m−3 ∧ β̄±n∓1,m−3
† = −

Λ±
k,l(n∓ 1,m− 3)2

2(n + 1 ∓ 1)
Ξ±
−(n,m; β̄ ) , (B.2)

where

Ξ±
ε (n,m; β̄ ) =

∑

q∈Qn

[(
(n± q + 1 ± ε) β1 ∧ β̄1 + (n∓ q + 1 ± ε) β2 ∧ β̄2

) ∣∣nq , m
〉〈n

q , m
∣∣

+
√

(n+ 1)2 − (q + 1)2 β1 ∧ β̄2
∣∣nq , m

〉〈 n
q+2 , m

∣∣

+
√

(n+ 1)2 − (q − 1)2 β2 ∧ β̄1
∣∣nq , m

〉〈 n
q−2 , m

∣∣
]

(B.3)

with ε = ± 1 and Λ±
k,l(n,m) := 0 for n ≤ 0. In (2.49) we encounter the matrix one-

form products

β̄+
n,m ∧ β̄−n+1,m−3 =

Λ+
k,l(n,m)Λ−

k,l(n+ 1,m− 3)
√

(n+ 1) (n + 2)
β̄1 ∧ β̄2

∑

q∈Qn+1

q
∣∣n+1

q , m+3
〉〈n+1

q , m−3
∣∣

(B.4)

while in (2.50) we use

β̄+
n,m ∧ β̄−n,m

† = −
Λ+

k,l(n,m)Λ−
k,l(n,m)

2(n + 1)
(B.5)

×
∑

q∈Qn+1

[
√

(n + 1)2 − q2
(
β1 ∧ β̄1 + β2 ∧ β̄2

) ∣∣n+1
q , m+ 3

〉〈n−1
q , m+ 3

∣∣

+
√

(n − q)2 − 1 β1 ∧ β̄2
∣∣n+1

q , m+ 3
〉〈n−1

q+2 , m+ 3
∣∣

+
√

(n + q)2 − 1 β2 ∧ β̄1
∣∣n+1

q , m+ 3
〉〈n−1

q−2 , m+ 3
∣∣
]
.

Using (B.1)–(B.5) together with

∑

q∈Qn

q = 0 and
∑

q∈Qn

q2 =
1

3
n (n+ 1) (n + 2) , (B.6)
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one can derive a number of trace identities which are useful for deriving the dimensionally

reduced gauge theory actions of section 3. One has

Tr

(
β̄±n,m

† ∧ ⋆β̄±n,m

Λ±
k,l(n,m)2

)
= 2π2 (n+ 1 ± 1) βvol ,

Tr

(
β̄±n,m

† ∧ β̄±n,m ∧ ⋆
(
β̄±n,m

† ∧ β̄±n,m

)†

Λ±
k,l(n,m)4

)
= 2π2 (n+ 1 ± 1) βvol ,

Tr

(
β̄±n,m ∧ β̄±n,m

† ∧ ⋆
(
β̄±n,m ∧ β̄±n,m

†)†

Λ±
k,l(n,m)4

)
= 2π2 (n+ 1)2

n+ 1 ± 1
βvol , (B.7)

Tr



β̄+

n,m ∧ β̄−n+1,m−3 ∧ ⋆
(
β̄+

n,m ∧ β̄−n+1,m−3

)†

Λ+
k,l(n,m)2 Λ−

k,l(n+ 1,m− 3)2


 = 2π2 (n+ 3)

3
βvol ,

Tr

(
β̄+

n,m ∧ β̄−n,m
† ∧ ⋆

(
β̄+

n,m ∧ β̄−n,m
†)†

Λ+
k,l(n,m)2 Λ−

k,l(n,m)2

)
= 2π2 n (n+ 2)

n+ 1
βvol ,

where Tr is the trace over SU(2) representations and ⋆ is the Hodge duality operator on

CP 2 corresponding to the metric (3.2) with

β̄1 ∧ ⋆β1 = β̄2 ∧ ⋆β2 = β1 ∧ ⋆β̄1 = β2 ∧ ⋆β̄2 = 2π2 βvol . (B.8)

Note that β̄1 ∧ ⋆β̄1 = β̄2 ∧ ⋆β̄2 = β1 ∧ ⋆β2 = β1 ∧ ⋆β̄2 = 0, together with their hermitean

conjugate equations.

C Index theorem on CP 2

Spinors cannot be globally defined on CP 2 due to a topological obstruction. However,

globally well-defined spinors can be constructed by twisting the Dirac operator on CP 2

with half-integer powers Leb
, b̃ ∈ Z + 1

2 of the monopole line bundle L. The index of the

Dirac operator associated with this twisted complex is computed by the Atiyah-Singer

index theorem to be [3]

νb =

∫

CP 2

ch
(
Leb

)
∧ Â = 1

2 (b+ 1) (b + 2) (C.1)

where ch(L) is the Chern character of L, Â is the Atiyah-Hirzebruch class of CP 2, and

b = b̃− 3
2 is an integer.4

In the main text we use the index (2.53) for higher rank SU(3)-equivariant bundles over

CP 2, and we will now derive this formula here. From (A.3) the zero mode structure of the

4The factor − 3

2
here is essentially the power of L arising from the U(1) part of the holonomy in bA. A

factor of 3 is the Euler characteristic of CP 2, and −3 is the first Chern number of the canonical line bundle

over CP 2. The factor − 3

2
arises because, on a complex manifold, the spinor bundle involves the square root

of the canonical line bundle. That this factor is not an integer reflects the fact that the spinor bundle over

CP 2 does not exist globally.
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Dirac operator for spinor fields transforming under the holonomy group H = SU(2)×U(1),

in the fundamental representation of SU(2) and in the background gauge field of Q ⊗ Leb
,

is easily evaluated [3]. Denoting this index index by νb;1 we have, using (A.3), the formula

νb;1 =

∫

CP 2

ch(Q) ∧ ch
(
Leb

)
∧ Â = 3νb − νb−1 = (b+ 1) (b + 3) (C.2)

where νb and νb−1 have been evaluated with (C.1). The index with respect to all higher

rank bundles can be computed in terms of the rank one result (C.1) by taking tensor powers

of the quotient bundle Q, since

∫

CP 2

ch
(
Q⊗n

)
∧ ch

(
Leb

)
∧ Â =

∫

CP 2

(
3 − ch(L−1)

)∧n ∧ ch
(
Leb

)
∧ Â . (C.3)

There is a technical issue, however, because Q⊗n is a bundle of rank 2n which is reducible in

terms of SU(2) representations and it will be more convenient for our purposes to decompose

it into irreducible representations.

The n-fold tensor product of the fundamental representation of SU(2) × U(1) decom-

poses into irreducible representations as

(1, 1)⊗n =

⌊n/2⌋⊕

t=0

Nt,n (n− 2t, n) , (C.4)

where Nt,n is the multiplicity

Nt,n =
(n− 2t+ 1)n!

(n− t+ 1)! t!
. (C.5)

Consider the equivariant rank two instanton bundle I → CP 2, and its n-fold symmetric

tensor product In given by (A.9) which is an equivariant vector bundle over CP 2 of rank

n+ 1. Its structure group is SU(2) and so it has no U(1) charge. One then has

Q⊗n =




⌊n/2⌋⊕

t=0

Nt,n In−2t


⊗ Ln/2 . (C.6)

In section 2.5 we use the index of the irreducible bundles In ⊗ Lec +m/2 of rank n + 1,

with c̃ ∈ Z + 1
2 a half-integer and n ≡ m mod 2 so that (n,m) is a faithful representation

of U(2). With b̃ = m−n
2 + c̃ it is given by

νb;n :=

∫

CP 2

ch(In) ∧ ch
(
Leb+n/2

)
∧ Â (C.7)

rather than (C.3). For given n this can be calculated explicitly if we know all the lower

νb;n−2t for t ≥ 1, since the K-theory formula

In =
(
Q⊗n ⊗ L−n/2

)
⊖




⌊n/2⌋⊕

t=1

Nt,n In−2t


 (C.8)
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implies

νb;n =

∫

CP 2

ch(Q⊗n) ∧ ch(Leb
) ∧ Â−

⌊n/2⌋∑

t=1

Nt,n νb;n−2t , (C.9)

and the first term on the right-hand side of (C.9) is known explicitly from (C.3) and (C.1).

We already know νb;0 = νb from (C.1) and νb;1 from (C.2), so we now have all the necessary

ingredients to prove the formula (2.53) by induction on n.

The index νb;n can be either positive or negative but its magnitude always corresponds

to the dimension (2.4) of some irreducible representation of SU(3), as expected on general

grounds [16]. For example, if b ≥ 0 then the index (2.53) is the dimension of the SU(3)-

module Cn,b. Under the decomposition (2.6) the irreducible SU(2) × U(1) representation

with largest monopole charge is (n, 2b+ n), where b+ n
2 = b̃+ n

2 − 3
2 is the U(1) charge of

the bundle In ⊗Leb+n/2
appearing in (C.7) including the contribution −3

2 from the Atiyah-

Hirzebruch class Â. We can represent this diagramatically using Young tableaux, in the

notation of (2.7). The Young diagram for Cn,b is

··
··︸ ︷︷ ︸
b

··︸ ︷︷ ︸
n

, (C.10)

which gives the index νb;n when b ≥ 0. This contains the irreducible SU(2) ×
U(1) representation

× ·· ×
× ·· ×︸ ︷︷ ︸

b

× ·· ×︸ ︷︷ ︸
n

(C.11)

with U(1) charge b+ n
2 , and this is the representation content of (C.7) when b ≥ 0.

The bundle Q⊗n appearing in (C.9) has monopole charge n
2 , and when n is odd the

choice b̃ = −n
2 cancels this charge and corresponds to the pure SU(2) bundle In. Hence

for odd n taking b = b̃− 3
2 = −n+3

2 gives the index

ν−n+3

2
;n = −1

8
(n + 1)3 , (C.12)

and corresponds to spinors coupling to pure anti-selfdual SU(2) gauge fields on CP 2 in the

(n + 1)-dimensional irreducible representation with no U(1) component. Since n = 2k + 1

is odd this is necessarily a spinor representation of SU(2), though the magnitude of the

index (C.12) corresponds to the dimension of a real representation Ck,k of SU(3). At the

opposite extreme, the integer (C.1) is the index for spinors coupling to a pure U(1) self-dual

gauge field on CP 2 with no SU(2) component, and νb equals the dimension of the SU(3)

representation Cb,0 for b ≥ 0 while −νb equals the dimension of C0,|b|−3 for b ≤ −3.
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